GANGADHAR MEHER UNIVERSITY Amruta vihar, sambalpur, odisha

SCHOOL OF COMPUTER SCIENCE

Syllabus for M.Sc. in Computer Science

(2-Year Programme)

Course Effective from Academic Year 2022-2023

SCHOOL OF COMPUTER SCIENCE

Vision

To create globally competent undergraduates and postgraduates in Computer Science by imparting training in emerging technologies and collaborative research through a conducive and disciplined academic environment, and orient them towards serving the society.

Mission Statements

- **M1**: To provide high quality professional training at the undergraduate and postgraduate level with an emphasis on basic principles of computer science.
- M2: To empower the students with the required skills to solve the complex technological problems of modern society and also provide them with a framework for promoting collaborative and multidisciplinary research.
- M3: To strengthen the Industry-Academia interface by interacting with the industry, educational & research organizations and alumni that will help the students to emerge as leaders in academics or in entrepreneurship.
- M4: To impart moral and ethical values, and interpersonal skills to the students for betterment of the society.

PROGRAM OUTCOMES(POs):

- **PO1. Knowledge and Understanding**: Develop an ability to understand the theoretical foundations of computer science for designing efficient methodologies along with the knowledge of limitations of computing.
- **PO2.** General, Technical and Professional Skills: An ability to function effectively as an individual with diversified skills or as a part of a multi-disciplinary team setting to accomplish defined goals.
- **PO3.** Application of Knowledge and Skills: Developing problem analysis skills and knowledge and applying the same in real life situation.
- **PO4.** Research Skills: Explore research based knowledge and carry out academic investigations on the cutting edge technologies in allied subjects of Computer Science.
- **PO5.** General Learning Outcomes: Create, select and apply advanced techniques and tools including modelling complex activities related to Computer Science.
- **PO6.** Constitutional, Humanistic, Ethical and Moral Values: Design, develop and evaluate new system components or processes of computer science that meet the desired needs with appropriate considerations of industry, society, public health, safety, culture, environment and sustainable development sticking on to the ethics and values.
- **PO7: Employability Job Skills and Entrepreneur Skills:** Prepare the students to take up a career as versatile contributors in industry, academia, research and development or entrepreneurship employing their expertise to advance personal growth while making meaningful contributions to societal progress

PROGRAM SPECIFIC OUTCOMES(PSOs):

PSO1. To shield students from the rapid obsolescence of computer technology, the program focuses on imparting foundational knowledge, fostering critical thinking skills, and cultivating technical expertise.

PSO2. Apply principles of computer science theory and concepts of software development to create effective computing-based solutions.

PSO3. Empowering the students to function as adept computer science professionals across various domains, including industry, advanced studies, research and development, academia, or entrepreneurship.

Post Graduate Programme Structure

Year	Semesters			
First Year	Semester I	Semester II		
Second Year	Semester III	Semester IV		

Part-I: Semester-I

Papers		Duration (Hrs)	Credit
Paper	Title		
No			
CSC101	Advanced Operating Systems	4	4
CSC102	Computer Architecture	4	4
CSC103	Data Communication and Networks	4	4
CSC104	Advanced Data Structures	4	4
CSC105	Lab I (Data Structure and Operating	6	4
	System)		
Total			20

Part-I: Semester-II

Papers		Duration (Hrs)	Credit
Paper	Title		
No			
CSC201	Object Oriented Programming	4	4
CSC202	Mobile Computing	4	4
CSC203	Discrete Mathematical Structures	4	4
CSC204	Theory of Computation	4	4
CSC205	Lab II (OOP using Java and TOC)	6	4
	DSE-I Papers		
CSC206 A	Data Warehousing and Mining	4	4
CSC206 B	Wireless Sensor Networks	4	4
CSC206 C	Internet of Things	4	4
CSC206D	Microprocessor and	4	4
	Microcontroller		
Total			24

Part-II: Semester-III

Papers		Duration (Hrs)	Credit
Paper No	Title		Creat
CSC301	Compiler Construction	4	4
CSC301 CSC302	Database Management Systems	4	4
CSC302 CSC303	Design and Analysis of Algorithms	4	4
CSC303	Design and Analysis of Algorithms DSE-II Papers	4	4
CSC304A		4	4
	Data Science	4	4
CSC304B	Web Technology	4	4
CSC304C	Information Security	4	4
CSC304D	Digital Image Processing	4	4
CSC305	Lab III (Algorithms and DBMS)	6	4
IDSE Pape	ers		
CSC306A	Network and Internet Technologies	4	4
CSC306B	Fundamentals of Computer	4	4
CSC306C	Introduction to Programming	4	4
	Using Python		
CSC306D	Artificial Intelligence	4	4
Total			24

Part-II: Semester-IV

Papers		Duration(Hrs)	Credit
Paper No	Title		
CSC401	Machine Learning	4	4
CSC402	Software Engineering and OOAD	4	4
CSC403	Cloud Computing	4	4
CSC404	Project Work Report and VIVA VOCE		8
	MOOCs-1		E
	MOOCs-2		- 6
Total			20+6*
	Grand Total		88+6*

*Non-Divisional Credits

SEMESTER WISE CREDIT DISTRIBUTION					
Semester I II III IV TOTAL					
Total Credit	20	24	24	20+6*	88+6*

NB:

- The students are encouraged to take two extra MOOCs courses to earn a maximum of 6 Credits.
- Each theory paper consists of 100 marks(Mid Sem 20,End Sem 80).
 Lab Exam will be of 100 marks.

Semester-I

Course Code	CSC101
Course Name	ADVANCED OPERATING SYSTEMS
Category	Programme Core Course
Prerequisite	Computer Programming and Data Structures
	Computer Organization and Architecture

Paper-CSC101

Advanced Operating Systems

UNIT-I:

10 hrs

Operating System Overview: -Introduction, The Need of Operating Systems, Evolution of Operating Systems, Types of Operating Systems, Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls, Virtual Machines, System Design and Implementation. **Process Management** – Process concepts, Life cycle, PCB, Schedulers, Process Scheduling, Threads, Scheduling Levels, CPU Scheduling: Scheduling-Criteria, Algorithms, Algorithm Evaluation.

UNIT-II:

10hrs

Concurrency:-Process synchronization, The Critical- Section Problem, Peterson's Solution, synchronization Hardware, Semaphores, Classic problems of synchronization, Monitors. Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock detection, deadlock prevention, deadlock avoidance, Recovery from deadlock. UNIT-III: 10hrs

Main Memory, Swapping, Contiguous Memory Allocation, Memory Management: Segmentation, Paging, Structure of the Page Table.

Virtual Memory: Demand Paging, Page Replacement, Allocation of Frames, Thrashing, Memory-Mapped Files

UNIT-IV:

10hrs

Mass-Storage Structure: Overview, Disk Structure, Disk scheduling, disk management, Swapspace management, RAID structure.

File Systems: File Concept, Access Methods, Directory and Disk Structure, File-System Mounting, Protection. File- System Structure and Implementation, Directory Implementation, Allocation Methods, Free-Space Management.

Text Book:

1. A. Silberchatz, P. B. Galvin, G. Gagne, Operating System Concepts, 8th Edition, Wiley India,2010.

Reference Books:

1. Charles Crowley, Operating Systems : A Design-Oriented Approach, 1st Edition, McGraw-Hill, 1996.

A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th Edition, Pearson,2015.
 W. Stallings, Operating Systems – Internals And Design Principles, 9thEdition, Prentice Hall,2017.

4. D. M. Dhandhere, Operating Systems-A Concept Based Approach, 2ndEdition, McGraw-Hill, 2006

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Explain the different types of Operating systems.
CO2	Describe the lifecycle of a process and its attributes with its scheduling algorithms.
CO3	Analyze the concept of Deadlock.
CO4	Apply segmentation and paging techniques.
CO5	Explain the structure and organization of the file systems and I/O systems

	0		• • • •		-	0 /				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		1		1			1	1	1
CO2	3		3		3			3	3	3
CO3	3		3		3			3	3	3
CO4	3		3		3			3	3	3
CO5	3		3		3			3	3	3

Course Code	CSC102
Course Name	COMPUTER ARCHITECTURE
Category	Programme Core Course
Prerequisite	Digital Logic

Paper-CSC102	
Computer Architecture	
UNIT :I 8hr	rs
Register Transfer and Micro-operations :	
Register transfer language, Register transfer, Bus and Memory transfer, Arithmetic, Logical and	ıd
Shift micro-operations, Arithmetic Logic Shift unit.	

Basic Computer Organisation and Design:

Instruction codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle & Register Reference Instructions, Memory Reference Instructions, Input-Output and Interrupt, Design of Basic Computer.

UNIT:II

Basic Processing Unit:

Some fundamental concepts, Register Transfers, Performing an Arithmetic or Logic operation, Fetching a word from memory, storing a word in memory, Execution of a complete instruction, Branch instructions, multiple Bus Organization.

Micro-Programmed Control:

Control memory, Addressing sequencing: Conditional branching, Mapping of Instruction, Subroutine; Micro Program example: Computer configuration, Micro-instruction format, Symbolic Micro-instruction, the fetch routine, Symbolic Micro-program, Binary micro-instruction; design of control unit: Micro program sequencer.

UNIT:III

Memory Organization:

Memory Hierarchy, Associative Memory: Hardware organization, Match Logic, Read operation., write operation, cache memory: Associative mapping, Direct mapping, Set Associative mapping, write into cache memory, cache initialization, virtual memory: Address space and memory Space, Address mapping using pages, Associative Memory Page table, Page Replacement.

UNIT: IV

Pipeline and Vector Processing :

Parallel Processing, Pipelining: General Considerations; Arithmetic Pipeline, Instruction Pipeline: four segment Instruction Pipeline Example, Data Dependency, Handling of Branch Instructions; Vector Processing : Array Processors.

Multiprocessors:

Characteristics of Multiprocessors, Interconnection structures, Inter-processor arbitration. Interprocessor communication and synchronization, cache coherence.

Text Book:

1. William Stalling, Computer Organization and Architecture, 10th Edition, PHI.

12hrs

12hrs

8hrs

Reference Books:

1. Rajiv Chopra ,Computer Architecture and Organization,1st Edition,S.Chand,2014.

2. Carl Hamacher, Zvonkoranesic, SafwatZaky,Computer Organization,5th Edition,McGrw-Hill Education India

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Explain the register transfer inside the computer along with the associate micro operations
	and reference instructions.
CO2	Explain the processing unit with the micro-programmed control working.
CO3	Describe the memory organization with the virtual memory concept along with the
	mapping and replacement technique.
CO4	State the pipeline concept with the relative example and with working of vector processor.
CO5	Solve the complexity of the system related to mapping and replacement.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	2	1	3		2	2	1	3
CO2	3	3	3	1	2				2	
CO3	1	3	2	2	2	1		2		3
CO4	2	3	2	2	2		3	1	1	1
CO5	2	3	3	2	1	2			3	

Course Code	CSC103
Course Name	DATA COMMUNICATION AND NETWORKS
Category	Programme Core Course
Prerequisite	Basics of Computers

Paper-CSC103
Data Communication and Networks
UNIT :I 12hrs
Overview of Data Communication and Networking. Physical Layer: Analog and Digital, Analog Signals, Digital signals, Analog versus Digital, Data Rate Limits, Transmission Impairment, More about signals, Digital Transmission: Line coding, Block coding, Sampling, Transmission mode, Analog Transmission : Modulation of Digital Data; Telephone modems, modulation of Analog signals, Multiplexing : FDM, WDM, TDM, Transmission media: Guided media, unguided media (wireless), Circuit switching and Telephone Network: Circuit switching, Telephone network.
UNIT:II 14hrs
Data Link Layer: Error Detection and Correction: Types of errors, Detection, Error correction, Data Link control and Protocols: Flow and Error control, Stop-and-Wait ARQ, Go-Back-N ARQ, Selective Repeat ARQ, HDLC, Point-to-Point Protocol, Multiple Access, Random Access, Controlled Access, Channelization. Local area Network: Ethernet, Traditional Ethernet, Fast Ethernet, Gigabit Ethernet, Wireless LANs : IEEE 802.11, Bluetooth virtual circuits: Frame Relay and ATM.
UNIT:III 10hrs
Network Layer: Host- to –Host Delivery: Internetworking, Addressing, Routing, Network Layer Protocols: ARP, RARP, NAT, BOOTP, DHCP, IPV4, IPV6, ICMP, ICMPV6 and Unicast Routing protocols, Transport Layer: Process to Process Delivery: UDP, TCP, congestion control and Quality of Service.
UNIT: IV 04hrs
Application Layer: Client Server Model, Peer to Peer network, Domain Network System (DNS), Electronic Mail (SMTP), and file transfer (FTP), HTTP and WWW.
Text Books:
 B.A. Forouzan, Data Communication and Networking, 6th Edition, Tata McGraw Hill ,2007. Peter Lars Dordal, An Introduction to Computer Networks, 2nd Edition , Loyola University of Chicago
Reference Books:
 1.A.S.Tenenbaum, Computer Network, 5thEdition, PHI. 2.James F. Kurose &Keith W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet, 8th Edition, Pearson Education India

	COURSE OUTCOMES: After completion of this course successfully, the students will be able to-
CO1	Understand the properties of digital and analog signals, functionality of different layers in OSI and TCP/IP network models and the factors which impact performance of data communication systems
CO2	Understand the analog and digital transmission, properties of communication medias, and the concept of multiplexing of data on common communication channel.
CO3	
CO4	Identify and describe the system functions in the correct protocol layer and further describe how the layers interact
CO5	Basic understanding of working of different protocols in various layers.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PS1	PS2	PS3
CO1	2	2	2	1	3	1	2	2	1	1
CO2	2	2	2	1	3	1	2	2	2	2
CO3	3	3	3	1	3	1	3	2	3	2
CO4	3	2	1	1	3	1	2	2	2	1
CO5	3	2	3	2	2	1	2	2	2	2

Course Code	CSC104
Course Name	ADVANCED DATA STRUCTURES
Category	Programme Core Course
Prerequisite	Elementary Mathematics and C Programming
	Language

Paper-CSC104	
Advanced Data Structures	
UNIT-I:	12hrs
Introduction to Data Structures, Arrays and Strings, Introductio	n to Algorithms, Algorithm
development, Complexity analysis, Recursion.	2 2
Linear Data Structures: Stacks: Operations and Application	s, Queues: Operations and
Applications, Circular Queues: Operations and Applications.	
Linked Lists: Operation – Creations, insertion, Deletion, Circular L	ists, and Doubly Linked List.
UNIT-II:	8hrs
Sorting: Insertion Sort, Merge Sort, Quick Sort, Radix Sort, and Hea	ap Sort.
Searching: Binary Search, Selection.	•
Dictionaries: skip-lists, hashing, analysis of collision resolution tech	iniques.
UNIT-III:	10hrs
Search Trees- Binary search Trees, Threaded binary tree, AVL Tree Searching, insertion, deletion operations of trees. Tries and pattern matching: Priority queues and binary heaps	, D TICES, Red Diack (rees.
UNIT-IV:	10hrs
Introduction to Graphs : Breadth first search and connected comp directed and undirected graphs and strongly connected components. Spanning trees: Prim's and Kruskal's algorithm, union-find data stru	· •
shortest path. Shortest path tree. Shortest and longest paths in direct	<i>v</i>
	ted acyclic graphs.Automatic
List management, dynamic storage management.	
Text Book:	
 Y. Langsam, M. Augenstein, A. M. Tenenbaum, Data Structu Hall, 1996. 	re using C and C++, Prentice
Reference Books:	
1. E. Horowitz, D. Mehta, S. Sahani. Fundamentals of Data St Press. 2007.	ructures in C++, Universities
2. M. A. Weiss, Data Structures and Algorithm Analysis in C++	+,PearsonEducation 2006.
3 M T Goodrich P Tamassia D Mount Data Structures a	nd Algorithms in $C_{\perp\perp}$ Wiles

3. M. T. Goodrich, R. Tamassia, D. Mount, Data Structures and Algorithms in C++, Wiley India Pvt. Ltd, 2004

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Analyse performance of algorithms and apply basic data structures stack and queue to
	solve real world problems.
CO2	Employ linked list to implement different ADTs and apply it in solving some problems.
CO3	Examine various sorting algorithms and outline different hashing techniques.
CO4	Describe hierarchical data structures and use it in real life applications.
CO5	Explain graph data structures and apply graph related algorithms in real world scenarios.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1			3		1		3	3	3	3
CO2	3		3		2		3	3	3	3
CO3	3		3		1		3	3	3	3
CO4	3		3		3		3	3	3	3
CO5	3		3		3		3	3	3	3

Paper-CSC105

Lab I:Data Structure and Operating Systems

DATA STRUCTURE PROGRAMS:

- 1. Implementation of sparse matrix
- 2. Implementation of linear search, binary search, bubble sort, insertion sort, selection sort
- 3. Implementation of single linked list and its operations
- 4. Design a doubly linked list to hold strings and use it for organizing a sequence of cities
- 5. Repeat Q4 using doubly circular linked list
- 6. Create a polynomial using single linked list and perform addition operation of two polynomials
- **7.** Implement a stack, use stack for conversion of infix to postfix and evaluation of postfix expression.
- 8. Implementation of circular queue (using array) with menu options like insert, delete, display and exit.
- **9.** Implementation of a priority queue and use it to organize studentrecords prioritized by marks.
- **10.** Recursive implementation of quick sort and merge sort. Generate 10 random integers in a given range and apply sorting mechanisms.
- **11.** Implement linear search and binary search to find out whether a given element is present or not in the array. Compare two search mechanisms based on number of comparisons required for a successful as well as unsuccessful search.
- **12.** Implementation of a binary search tree with menu options: Construct a tree, insertanode, delete anode, traverse and display preorder, in order and post order sequenceof its nodes.
- 13. Implementation of Heap Sort.
- **14.** Implementation of digraphs using adjacency matrix and find the transitive closureusingWarshall's algorithm.
- **15.** Implementation of a weighted graph and find minimal cost spanning tree usingPrim's algorithm.
- **16.** Implementation of a weighted graph and find minimal cost spanning tree using Kruskal's algorithm.
- **17.** Implement Dijkstra's algorithm to find single source shortest path.
- **18.** Implement Floyd Warshall's algorithm to find all pair shortest path.
- **19.** Implement Topological sorting.
- **20.** Implementation of a small Real World Application illustrating data structure usage.

OPERATING SYSTEM PROGRAMS:

- 1. Implementation of FCFS Scheduling.
- 2. Implementation of Round Robin Scheduling.
- 3. Implementation of Shortest Job First Scheduling (Non Pre-emptive).
- 4. Implementation of Shortest Job First Scheduling (Pre-emptive).
- 5. Implementation of Priority Based Scheduling.
- 6. Implementation of Deadlock detection
- 7. Implementation of simple Thread and Multi-Threading.
- 8. Implementation of Paging techniques of Memory Management(FIFO,LRU,OPTIMAL).
- 9. Implementation of Semaphore.
- 10. Implementation of Peterson's Solution in Process Synchronization.

Semester-II

Course Code	CSC201
Course Name	OBJECT ORIENTED PROGRAMMING
Category	Programme Core Course
Prerequisite	Basic procedural programming Language (like C-
	Programming)

Paper-CSC201

Object Oriented Programming

UNIT-I: 8hrs Java Evolution and Environment: Java evolution, overview of java language, java history, features of java, how java differs from C and C++, java and World Wide Web, web browser. Java Environment: Java Development Kit(JDK), Application Programming Interface(API), java programming structure, java tokens, constants, variables, expressions, decision making statements and looping, java statements, overview of arrays and strings, machine neutral, Java Virtual Machine(JVM), Command Line Arguments.

UNIT-II:

12 hrs

Classes, Objects and Methods: Introduction, defining a class, creating objects, accessing class members, constructors, method overloading, static members. Inheritance: Defining a sub-class, sub-class constructor, multi-level variables, final classes and finalize methods, abstract methods and classes, visibility control.**Arrays and Strings:** One-dimensional arrays, creating an array, declaration of arrays, initialization of arrays, two-dimensional arrays, string arrays, string methods, string buffer class, vectors, wrapper classes, Basic I/O Streams: Scanner, buffered reader, Collection classes.**Managing Errors and Exceptions**: Introduction, types of errors: compile time and run-time errors, exceptions, types of exceptions, syntax of exception handling code, multiple catch statements, using finally statement, throwing our own exceptions.

UNIT-III:

10 hrs

Interfaces, Package and Multi-threaded Programming: Introduction, defining interfaces, extended interfaces, implementing interfaces.**Package:** Creation, importing a package and user-defined package.**Threads:** Introduction to threads, creating threads, extending the thread class, implementing the 'runnable' interface, life-cycle of a thread, priority of a thread, synchronization, and deadlock.

UNIT-IV:

10 hrs

Applet programming:Introduction, how applets differ from applications, building applet code, applet life cycle, about HTML, designing a web page, passing parameters to applets, getting input from the user.**Graphics Programming:** Introduction, abstract window toolkit class hierarchy, frames, event-driven programming, layout managers, panels, canvases, drawing geometric

figures.**Introduction to Swings:** Introduction to Swings, overview of Swing components: Jbutton, JCheckBox, JRadioButton, JLabel, JTextField, JTextArea, JList.

Text Book:

1. H. Schildt, The Java Complete References, 11th Edition, Tata McGraw Hill,2019.

Reference Books:

- 1. Y.Daniel Liang, An Introduction to JAVA Programming, 10th Edition, Pearson.
- 2. K. Sierra, Head First Java, 2nd Edition, O'Reilly Media, Inc, ,2003.
- 3. E. Balaguruswamy, Programming with JAVA, 6th Edition, Tata McGraw Hill,2014

	COURSE OUTCOMES: After completion of this course successfully, the students will be able to:-
CO1	Explain the basic principles of object-oriented programming along with its strength and weakness
CO2	Identify Java standard libraries and classes.
CO3	Apply the object-oriented programming techniques in developing small to medium- sized application programs and use it in real life applications.
CO4	Identify Java code utilities in applets, Java packages, and classes.
CO5	Design simple Graphical User Interface applications and use it in real world scenario.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2		3	2	3		3	2	1	1
CO2	3	1	3	3		1	2	2	2	3
CO3	3	3	3	3	2	2	3	3	3	3
CO4	2	2	3	3	2	2	3	3	3	3
CO5	3	2	3	3	2	1	2	3	3	3

Course Code	CSC202
Course Name	MOBILE COMPUTING
Category	Programme Core Course
Prerequisite	Data Communication and Computer Networks

Paper-CSC202 Mobile Co	mnuting
UNIT-I:	10hrs
Introduction to mobile computing, mobile comput networks:Cellular Network and frequency reus Interferences and System Capacity, Improving co Splitting, Sectoring, Repeaters and Range Extensi	e, Channel Assignment, Handoff Strategies, verage and capacity in Cellular Systems – Cell
UNIT-II:	10hrs
Personal Communications Services (PCS): PC	S Architecture, mobility management, Global
System for Mobile Communication (GSM). Sy management, Network signalling. General Packe GPRS Network Nodes	-
UNIT-III:	10hrs
Mobile Network Layer: Mobile IP (Goals, assidelivery, agent advertisement and discovery, optimizations), Dynamic Host Configuration Prot Mobile Transport Layer: Traditional TCP, Indretransmit/fast recovery, Transmission /time-out	registration, tunnelling and encapsulation, ocol (DHCP). lirect TCP, Snooping TCP, Mobile TCP, Fast
oriented TCP.	
UNIT-IV:	10hrs
Mobile Data Communication: WLANs (Wireless Mobile Satellite Communication Networks: Cass systems. Wireless Enterprise Networks: Introduct networks, 4G Technology, Long Term Evolution	se studies of the IRIDIUM and GLOBALSTAR ion to Virtual Networks, VPN, Mobile Ad-hoc
Text Books:	
1. R. Kamal, Mobile Computing, 1 st Edition, Ox 2.A K Talukder& R RYavagal ,Mobile Computing 2 nd Edition,TMH.	
3.T. S Rappaport ,Wireless Communication, 2 nd E	Edition, Pearson, 2002.
Reference Books:	. ,
1.Jochen Schiller ,Mobile Communications,Addis	son-Wesley,2 nd Edition.
2.UWE Hansmann, LotherMerk, Martin S. Nic	•
Computing ,2 nd Edition, Springer.	-
3.P.Stavronlakis ,Third Generation Mobile Teleco Publishers	ommunication Systems,1 st Edition, Springer

	COURSE OUTCOMES: After completion of this course successfully, the students will be able to-
CO1	Explain the basic of Mobile Computing.
CO2	Infer the fundamentals of wireless communications.
CO3	Analyze security, energy efficiency, mobility, scalability, and their unique characteristics in wireless networks.
CO4	Demonstrate basic skills for cellular networks design.
CO5	Apply knowledge of TCP/IP extensions for mobile and wireless networking.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	1	1	1		1			2		
CO2	2	2		3				2	1	
CO3	2	3	3	2	2	1	1	2	2	2
CO4	2	3	3	2	2	1	1	3	3	3
CO5	2	3	1		1		1	2	2	

Course Code	CSC203
Course Name	DISCRETE MATHEMATICAL STRUCTURES
Category	Programme Core Course
Prerequisite	Basics of set theory and combinatory

Paper-CSC203
Discrete Mathematical Structures
UNIT-I: 16hrs
Fundamentals of Logic: Propositional Logic, Propositional Equivalences, Predicate and
Quantifiers, nested Quantifiers, Rules of Inference. Set Theory: Sets, Set Operations.
Introduction to proofs : proof by Induction, proof by contradiction, proof by cases with examples.
Mathematical Induction: Introduction to Induction, strong Induction, Recursion.
Relations: Relations and their properties, n-ary Relations and their applications, Representing
relations, Closures of relations, Equivalence relations, and Partial Orderings, lattices, partial order
set, properties of lattices.
Functions: Types of Functions, Composition of Functions, Invertible Functions, Recursive
Functions, Pigeon-hole principle.
UNIT-II: 06hrs
Discrete Numeric functions and Generating Functions: Discrete Numeric
Functions, Generating Functions, Recurrence relations and recursive algorithms, Linear
recurrence relations, Solving Recurrence Relations by Generating Functions.
UNIT-III: 10hrs
Graphs: Graphs, Graph models, special types of graphs, Representing graphs, Graph
Isomorphism, connectivity, Euler and Hamilton paths, Planar graphs, Graph Coloring, Matching
problem. Trees: Introduction to Trees, Applications of Trees, Binary Trees, n-ary Trees, Tree
Traversal, Spanning Trees.
UNIT-IV: 08hrs
Algebraic Structures: Group, Semi groups ,monoids,subgroup, homomorphism, co-sets, normal
subgroup, Lagrange's theorem, algebraic system of two binary operation, Boolean algebra,
Boolean function and simplification, group codes, parity check, single error correcting code
Text Books:
1. C.L.Liu, D. P. Mohapatra, Elements of Discrete Mathematics: A Computer Oriented Aproach,
4 th Edition, McGraw-Hill, 2016
2. K. H. Rosen, Discrete Mathematics & Its Applications (withCombinatoricsand Graph Theory),
6 th Edition, McGraw-Hill, 2007.
Reference Books:

- **1.** J.P. Tremblay, R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, McGraw-Hill, 1997.
- **2.** R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics : A Foundation for Computer Science, 2nd Edition, Pearson Education, 2007.
- **3.** D. B. West, Introduction to Graph Theory, 2nd Edition, PHI Learning, 2009.
- **4.** R. A. Brualdi, Introductory Combinatorics, 4th Edition, Pearson, 2004.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Able to use logical notation to define and reason about fundamental mathematical
	concepts such as sets, relations, and functions.
CO2	To apply mathematical foundations, algorithmic principles, and computer science theory
	to the modelling and design of computer based systems.
CO3	Able to construct simple mathematical proofs and possess the ability to verify them.
CO4	Model problems in Computer Science using graphs and trees methods.
CO5	To Understand and prove fundamental results and solve algebraic problems using
	appropriate techniques

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	1	2	1	2		2	3	2	1
CO2	3	2	3		3			3	3	3
CO3	2	1	1	2	3		1	3	2	1
CO4	3		3		3			1	1	2
CO5	3	2	2	1	3		2	2	3	2

Course Code:	CSC204
Course Name:	THEORY OF COMPUTATION
Category:	Programme Core Course
Prerequisite:	Fundamental of computer science and mathematics

Paper-CSC204
Theory of Computation
UNIT-I: 10hrs
Introduction: Automata theory, Computability theory, Complexity theory, Mathematical notations & terminology, Alphabet, String, Languages & operations on strings; Finite Automata (Deterministic): Formal definition, Transition function, Extended transition function, Language of DFA, Design of DFA; Finite Automata (Non-deterministic): Formal definition, Language of NFA, Equivalence of DFA & NFA; NFA with Epsilon Transition, Conversion from Epsilon-NFA to DFA, Minimization of DFA.
UNIT-II: 10hrs
Moore machines, Mealy machines; Regular expressions: Regular operators and their precedence, Building regular expressions, DFA to Regular expressions, Regular expressions to DFA, Arden's theorem, Pumping Lemma for Regular languages, Closure properties of Regular languages.
UNIT-III: 10hrs
Introduction to Grammars: Definition, Derivation of string, Left and right linear grammars, Regular grammars; Context Free Grammars (CFG): Definition, Derivation of string, Language of CFG, Parse Tree, Ambiguity in grammar, Elimination of ambiguity, Normal forms of CFG: Chomsky and Greibachnormal forms, Converting CFG to CNF & GNF, Closure properties of context free languages (CFL).
UNIT-IV: 10hrs
Push Down Automata(PDA): PDA Components, Moves of a PDA, Design of a PDA, PDA to CFG and CFG to PDA conversion, Pumping lemma for CFL; Turing Machines (TM): Design of a TM, Variation of TM, Recursively Enumerable Languages and undecidable problems. Church Turing hypothesis, Recursive and recursively enumerable sets, Chomsky's hierarchy of languages. Godel numbering; NP Completeness: P and NP, NP complete and NP Hard problems.
Text Books:
 J. 1.E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, 3rd Edition, Pearson Education, 2007. P. Linz, An Introduction to Formal Languages and Automata, 4th Edition, Jones & Bartlett Learning, 2006.
Reference Books:
 M. 1.Sipser, Introduction to the Theory of Computation, 3rd Edition, Cengage Learning, 2012. J. 2.C. Martin, Introduction to Languages and the Theory of Computation, 4th Edition, Tata McGraw- Hill, 2010. K. 3.L. P. Mishra, and N. Chandrasekaran, Theory of Computer Science: Automata, Languages and
3. K. 3.L. P. Mishra, and N. Chandrasekaran, Theory of Computer Science: Automata, Languages and Computation, 3rd Edition, PHI, 2012.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Develop and implement mathematical models with DFA, NFA for regular languages.
CO2	Design regular expression for regular sets.
CO3	Design and implement grammar and PDA for context free languages and demonstrate their
	properties. Construct Turing machines for context sensitive and un-restricted languages.
CO4	Describe the Chomsky hierarchy of Formal Languages and Grammar.
CO5	Explain the concept of decidability & recursive enumerability, and classify a given language
	to the P, NP or NPC complexity classes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		3		3			3	3	3
CO2	3		3		3			3	3	3
CO3	3		3		3			3	3	3
CO4	3		3		3			3	3	3
CO5	3		3		3			3	3	3

Paper-CSC205

Lab II: OOP using Java and Theory of Computation

JAVA PROGRAMS:

- 1. Programs to illustrate class and objects
- 2. Programs to illustrate Overloading & Overriding methods in Java.
- 3. Programs to illustrate constructors
- 4. Programs Illustrate the Implementation of Various forms of Inheritance. (Ex. Single, Hierarchical, Multilevel inheritance....)
- 5. Program which illustrates the implementation of multiple Inheritance using interfaces in Java.
- 6. Program to illustrate the implementation of abstract class.
- 7. Programs to illustrate Exception handling
- 8. Programs to create Packages in Java.
- 9. Program to Create Multiple Threads in Java.
- 10. Program to Implement Producer/Consumer problem using synchronization
- 11. Developing a simple paint like program using applet
- 12. Developing programs on JButtons, JTextBox, JTextButton etc.

TOC PROGRAMS:

- 1. Review of C-Programming and use of JFLAP.
- 2. Simulation of DFA for a specific language using C program.
- 3. Simulation of DFA using JFLAP.
- 4. Simulation of a generalized DFA to recognize any given language.
- 5. Simulation of NFA using JFLAP.
- 6. NFA to DFA conversion using JFLAP.
- 7. DFA minimization using JFLAP.
- 8. String parsing for a CFG using JFLAP.
- 9. Design of PDA using JFLAP.
- 10.Design of TM using JFLAP

Course Code:	CSC206 A
Course Name:	DATA WAREHOUSING AND MINING
Category:	Programme Elective Course
Prerequisite:	Data Structure and Algorithm, Linear Algebra, Basics of Web programming

DSE Paper – CSC206A
Data Warehousing and Mining
UNIT-I: 10hrs
Evolution of Decision Support Systems- Data warehousing Components –Building a Data warehouse, Data Warehouse and DBMS, Data marts, Metadata, Multidimensional data model, OLAP vs OLTP, OLAP operations, Data cubes, Schemas for Multidimensional Database: Stars, Snowflkes and Fact constellations.
UNIT-II: 10hrs
Types of OLAP servers, 3–Tier data warehouse architecture, distributed and virtual data warehouses. Data warehouse implementation, tuning and testing of data warehouse. Data Staging (ETL) Design and Development, data warehouse visualization, Data Warehouse Deployment, Maintenance, Growth, Business Intelligence Overview- Data Warehousing and Business Intelligence Trends - Business Applications.
UNIT-III: 10hrs
Data mining-KDD versus datamining, Stages of the Data Mining Process-task premitives, Data Mining Techniques -Data mining knowledge representation – Data mining query languages, Integration of a Data Mining System with a Data Warehouse – Issues, Data preprocessing – Data cleaning, Data transformation, Feature selection, Dimensionality reduction, Discretization and generating concept hierarchies-Mining frequent patterns- association-correlation. Decision Tree Induction - Bayesian Classifiation – Rule Based Classifiation – Classifiation by Back propagation – Support Vector Machines – Associative Classifiation – Lazy Learners – Other Classifiation Methods.
UNIT-IV: 10hrs
Clustering techniques – , Partitioning methods- k-means Hierarchical Methods - distance-based agglomerative and divisible clustering, Mining complex data objects, Spatial databases, temporal databases, Multimedia databases, Time series and Sequence data; Text Mining –Graph mining-web mining-Application and trends in data mining
Text Books:
 1.Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, 3rd Edition, MorganKaufmann Publishers, 2011. 2.Alex Berson and Stephen J. Smith, "Data Warehousing, Data Mining & OLAP",10thEdition,TataMcGraw Hill Edition, 2007. 3.G. K. Gupta, "Introduction to Data Min Data Mining with Case Studies", Easter EconomyEdition, Prentice Hall of India, 2006
Reference Books: 1. Mehmedkantardzic,Datamining:Concepts,Models,Methods and Algorithms,Wiley,Interscience, 2003.

2.Ian Witten, Eibe Frank, Data Mining; Practical Machine Learning Tools and Techniques, 3rd Edition, Morgan Kaufmann, 2011.

3.George M Marakas, Modern Data Warehousing, Mining and Visualization, Prentice Hall,2003.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Describe the requirement of a data warehouse and its components.
CO2	Explain the data warehouse life cycle.
CO3	Explain the concepts of data mining and data pre-processing.
CO4	Analyze different classification algorithms and apply the same to real life problems.
CO5	Apply different clustering algorithms for solving problems in various domains.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2						1	2	2	2
CO2	2						1	2	2	2
CO3	3		2	2			2	3	3	3
CO4	3		3	3	3		3	3	3	3
CO5	3		3	3	3		3	3	3	3

Course Code	CSC206B
Course Name	WIRELESS SENSOR NETWORKS
Category	Programme Elective Course
Prerequisite	Basic Idea of Computer Networks

DSE Paper – CSC206B	
Wireless Sensor Networks	
UNIT-I: 10hrs	S
Introduction: Networked wireless sensor devices, Applications: Habitat Monitoring, Sm	art
Transportation, Key design challenges. Network deployment: Structured versus randomiz	ed
deployment, Network topology, Connectivity. Introduction to cloud system, Sensor Cloud System	ns,
Challenges in Sensor Cloud Systems.	
UNIT-II: 8h	rs
Localization: issues & approaches, Coarse-grained & Fine-grained node localization, Network	rk-
wide localization. Wireless characteristics: Basics, Wireless link quality, Radio ener	gy
considerations, SINR capture model for interference.	
UNIT-III: 10h	rs
Issues in designing MAC protocol for WSNs, Classification of MAC Protocols, Energy efficien	cy
in MAC protocols, Asynchronous sleep techniques, Sleep-scheduled techniques.	
Classification of Energy Management Schemes Sleep-based topology control: Constructing	
topologies for connectivity, constructing topologies for coverage.	
UNIT-IV: 12hrs	
Routing: Metric-based approaches, Routing with diversity, Multi-path routing, Lifetim	ne-
maximizing energy-aware routing techniques, Geographic routing. Data-centric routing, Da	ta-
gathering with compression, Querying, Data-centric storage and retrieval, The database perspecti	ve
on sensor networks.	
Text Books:	
1. Kazem Sohraby, Daniel Minoli, TaiebZnati, Wireless Sensor Networks: Technology, Protoco	ols,
and Applications, Wiley Inter Science.	
2. Bhaskar Krismachari, Networking Wireless Sensors,1 st Edition,Cambridge University Press	
Reference Books:	
1. Edgar H. Callaway, Wireless Sensor Networks: Architectures and Protocols, 1 st Edition,	Jr.
Auerbach Publications, CRC Press.	
2. C.S Raghavendra, Krishna M, Sivalingam, TaiebZnati, Wireless Sensor Network	ks,
1 st Edition,Springer.	
3. Victor Lesser, Charles L. Ortiz, and Milind Tambe, Distributed Sensor Networks: A Multiage	ent
Perspective, 1 st Edition,Kluwer Publications.	
4.Feng Zhao, Leonidas Guibas, Morgan Kaufmann, Wireless Sensor Networks: An Informati	on
Processing Approach, 1 st Edition,Series in Networking 2004.	

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Define the basic concepts of wireless sensor networks, sensing, and challenges.
CO2	Explain various deployment structures of wireless sensor networks.
CO3	Describe and explore localization, radio standards and wireless characteristics.
CO4	Discuss the communication protocols adopted in wireless sensor networks and distinguish
	energy management schemes.
CO5	Analyze different routing techniques and identify various storage and retrieval issues.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3							1		
CO2	3		1	1	1		1	1	1	1
CO3	3			1	1		1		1	
CO4	3		2	2	2		2	2	2	
CO5	3		3	3	3		3	2	2	3

Course Code	CSC206C
Course Name	INTERNET OF THINGS
Category	Programme Elective Course
Prerequisite	Basic Idea of Computer Networks

DSE Paper –CSC 206C
Internet of Things
UNIT-I: 10hrs
Introduction to IoT, Basic requirements for building an IoT system, IoT reference framework, IoT network level – performance criteria. IoT devices: Sensors, Types of sensors and their functions: temperature, pressure, air pollution proximity, infrared, moisture & humidity, flow, level, noise, and speed sensors. Characteristics or sensors. Use of RFID
Actuators, Types of actuators and their functions: electrical, mechanical, and hydraulic actuators controlling IoT devices
UNIT-II: 10hrs
IoT requirements for networking protocols, device addressing, credential management, wireless spectrum, determinism, security and privacy, application interoperability, semantic interoperability. IoT Protocol Stack: layered view. Link layer: IEEE 802.15.4 technology, LoRaWAN end-to-end architecture, Time-Sensitive Networking
Internet Layer: Routing Protocol for Low-Power and Lossy Networks. 10hrs
Application Protocols Layer: Data Serialization Formats, Communication Paradigms Request/Response Versus Publish/Subscribe, Blocking Versus Non-blocking, QoS: Resource Utilization, Data Timeliness, Data Availability, Data Delivery IoT Application Protocols: CoAP, XMPP, MQTT, AMQP, SIP, IEEE 1888, and DDS RTPS. Application Services Layer: ETSI M2M network architecture, oneM2M standards. IoT Services Platform: Functions and Requirements, IoT Platform Manager, Discovery Communication Manager, Data Management, Management of IoT Devices, Configuration and Fault Management, Performance Management and measures
UNIT-IV: 10hrs
IoT security and Privacy: challenges, requirements, IoT Three-Domain Architecture, Attacks and Countermeasures for each domain. Applications of IoT in areas like Smart home, Agriculture, Healthcare, Industry, Transportation Retail, Oil and Gas, Energy etc. IoT Service Model: Anything as a Service, IoT Connected
Ecosystems Models
Text Book:
1. AmmarRayes and Samer Salam, Internet of Things from Hype To Reality: The Road to Digitization, 2nd Edition, Springer, 2019.

	COURSE OUTCOMES:							
	After completion of this course successfully, the students will be able to-							
CO1	Describe basic concepts of IoT, its architecture and system design.							
CO2	Employ the communication mechanisms between sensors and systems using various							
	protocols and network models.							
CO3	Explain IoT with respect to machine to machine and design IoT systems with data							
	synchronization and resource manipulation. Explore various application protocols.							
CO4	Discuss and describe different security issues and challenges.							
CO5	Identify real world applications of IoT in multidisciplinary domains.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		2		1			1	3	3
CO2	3		3		3			1	3	3
CO3	3		3		3			1	3	3
CO4	3		3		3			1	3	3
CO5	3		3		3			1	3	3

Course Code	CSC206D
Course Name	Microprocessor and Microcontroller
Category	Programme Elective Course
Prerequisite	Basic of Computer Organization and Architecture

DSE Paper –CSC 206D	
Microprocessor and M	licrocontroller
UNIT-I:	10hrs
8085 AND 8086 Microprocessors : Architecture, Pin dia diagrams, Interrupts of 8085, Instruction set and Assemb 8086 Microprocessor: Architecture, signal descriptions Maximum mode signals, addressing modes, interrupt structure, str	ly Language Programming of 8085. c, common function signals, Minimum and acture.
UNIT-II:	10hrs
I/O Interfacing: Interfacing with 8086/ 8085: Interf explanation of timing diagrams. Interfacing with peripher Interfacing with key boards, LEDs, LCDs, ADCs, and D. Introduction to microprocessors like 80386, 80486	ral ICs like 8255, 8254, 8279, 8259, 8259 etc. ACs etc.
UNIT-III:	10hrs
8051 Microcontrollers : Overview of 8051 microcontrollers: Overview of 8051 microcontrollers, addressing modes and instruction set of communication, programming Timer Interrupts, programming of serial communication interrupts, program to other micro controllers.	8051, Interrupts, timer/Counter and serial ogramming external hardware interrupts,
UNIT-IV:	10hrs
Real World Interfacing Design With 8051: Real world	interface design: LED, SWITCH, keyboard,
LCD, ADC, DAC, UART, RTC, PWM, Watch Dog Tim	er, DC Motor, Stepper Motors.
Text Books:	
1. A.K. Roy and K.M. Bhurchandi ,Advance Microproce Education.	ssor and Peripherals, Tata McGraw-Hill
2. Mazidi and Mazidi, The 8051 Microcontroller and Em Edition, Pearson Education.	bedded Systems using Assembly and C,2 nd
3. Ramesh Gaonkar, Microprocessor Architecture, Progra Edition, Penram International Publishing	amming and Applications with the 8085, 5 th
Reference Books:	
 Walter A. Triebel&Avtar Singh ,The 8088 and 8086 M Software, Hardware, andApplications , 4th Edition. D. V. Hall,Micro processors and Interfacing,2nd Edition 	n, TMGH.
3. Kenneth. J. Ayala, The 8051 Microcontroller Architec Cengage learning.	
4. Ajay. V. Deshmukh ,Microcontrollers:Theory and App	blications, Tata McGraw-Hill Education

	COURSE OUTCOMES:								
	After completion of this course successfully, the students will be able to-								
CO1	Analyze role of microprocessor and microcontroller in computer systems.								
CO2	Distinguish between maskable and non-maskable interrupt, and role of DMA in								
	microprocessor.								
CO3	Analyze working of 8086 and its architecture.								
CO4	Analyze the data transfer information through serial & parallel ports.								
CO5	Identify a detailed s/w & h/w structure of the Microprocessor.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	1	1	1	1			1	2	1
CO2	1	1			1					
CO3	2	1	1	2	2	2	1	2	2	1
CO4	2	1			1					
CO5	1	1	1	1	1	1		1	2	2

Semester-III

Course Code:	CSC301
Course Name:	COMPILER CONSTRUCTION
Category:	Programme Core Course
Prerequisite:	Theory of Computation / Automata theory

Paper-CSC301	
Compiler Co	onstruction
UNIT-I:	12 hrs
Introduction: Overview and Phases of compilat Deterministic Finite Automata (NFA & DFA), Reg languages, Design of a Lexical Analyzer as a DFA	gular grammar, Regular expressions and Regular
UNIT-II:	14 hrs
Syntax Analysis: Context free grammars and Con Ambiguous grammar. Parser, Top down Parsing Non-recursive Predictive Parsing, Error reporting	: Recursive descent parsing, LL (1) grammars,
Bottom Up Parsing: Handle pruning and shift red SLR parsing tables, LR(1) parsers and construct construction of efficient LALR parsing tables detection, Parser generator.	ion of LR(1) parsing tables, LALR parsers and
UNIT-III:	08 hrs
Syntax Directed Translation – Syntax Directed Applications of Syntax Directed Translation. Syntable, Symbol Table organization, Data Structures	mbol Table Organization - Structure of Symbol
Intermediate code generation: Intermediate code language.	(IC), IC for various constructs in programming
UNIT-IV:	06 hrs
Machine code generation, Issues in the design of scheme. Elements of code optimization, Peephol and stores, Elimination of unreachable code, Elim common sub-expressions, Basics of flow of contr	e Optimization, Elimination of redundant loads ination of jump over jumps, Elimination of local
Text Book:	
1.A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullma 2^{nd} Edition, Pearson Education, 2007.	an, Compilers: Principles, Techniques & Tools ,
Reference Book:	
1.K. D. Cooper and L. Tarezon T. Munakata, Engi	ineering a Compiler, 2 nd Edition, Elsevier, 2011.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Identify phases of a compiler, process of designing lexical analyzer, and apply LEX tool.
CO2	Construct parsing tables and implement parser using BISON tool.
CO3	Understand use of symbol table and design SDT as semantic analyzer for a language.
CO4	Generate intermediate code using lexical analyzer, parser and semantic analyzer.
CO5	Translate intermediate code to machine code, handle run-time environment, and apply code
	optimization techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		3		3			3	3	3
CO2	3		3		3			3	3	3
CO3	3		3		3			3	3	3
CO4	3		3		3			3	3	3
CO5	3		3		3			3	3	3

Course Code	CSC302
Course Name	DATA BASE MANAGEMENT SYSTEMS
Category	Programme Core Course
Prerequisite	Basic Understanding of Algorithms and Data
	Structures

Paper-CSC302							
Database Management Systems							
UNIT-I: 10hrs							
Introduction to DBMS: Characteristics, Purpose, Application of the Database approach,							
Advantages of using DBMS approach upon file structure, Three-schema Architecture, Data							
Abstraction, Data Independence, Data base languages, DBMS Architecture, Data Models							
overview, Introduction to ER model and Relational data model.							
Relational Query Language: Relational algebra, Tuple and Domain Relational Calculus, SQL.							
UNIT-II: 12hrs							
Database Design and ER model: Overview of Design Process, Entities, Attributes, Constraints,							
Weak Entities, ER diagram, Extended ER Features, Reduction to Relational Schemas.							
Relational Database Design: Feature of Good Relational Design, Atomic Domain and First							
Normal Form, Functional Dependency Theory, Decomposition of Schemas, Properties of							
Relational Decompositions, Normal forms and Normalization, 2NF, 3NF, BCNF, Multivalued							
Dependencies & 4NF. Performance tuning and Denormalization							
UNIT-III: 8hrs							
Query Processing and Optimization: Evaluation of Relational Algebra Expression,							
QueryEquivalence, Join strategy, Query optimization algorithms. Storage Strategies: Indices, B+Trees, Hashing							
UNIT-IV: 10hrs							
Transaction Processing: Transaction Concept, ACID Properties of Transaction, Serializability,							
Recoverability.							
Concurrency Control: Overview, Lock-based Protocol, Timestamp ordering protocol, Multi							
version and Optimistic concurrency control techniques.							
Recovery Systems: Database Failure and Recovery, Log based Recovery to preserve Atomicity							
and Durability							
Text Book:							
1.A. Silberschatz, F. H. Korth, Database System Concepts, 6th Edition, MGH, 2010.							
Reference Books:							
1. R. Elmasri, Fundamental of Database Systems,7 th Edition, Pearson Education, 2008.							
2. B. Desai, An Introduction to Database System, 2 nd Edition,Galgotia publication.							
3.C.J. Date, An Introduction to Database Systems, 8th Edition, Pearson Education							

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to
CO1	Define the basics of databases, database management systems, architecture of database
	systems, and the role of database users. Explain effectively the features of database
	management systems and data models.
CO2	Construct formal queries using relational algebra and relational calculus and structured
	query languages to perform database operations.
CO3	Identify the attributes to code a real world entity and create E-R models for designing
	databases for real-world applications. Examine the database design to check for
	improvement using normalization.
CO4	Describe various indexing techniques and explain the basics of query evaluation
	mechanisms.
CO5	Recognize the state of a database instance. Apply concurrency control and recovery
	mechanisms to maintain the correctness and consistency in the database.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3				1		1			
CO2	3				1		2	2	2	
CO3	3		3		1		2	3	3	
CO4	3		2	1	1		2			2
CO5	3		2		1		2	2		

Course Code	CSC303
Course Name	DESIGN AND ANALYSIS OF ALGORITHMS
Category	Programme Core Course
Prerequisite	Data Structure

Paper-CSC303	
Design and Analysis of Algorithms	
UNIT-I: 10hrs	
Introduction to Design and analysis of algorithms, Growth of Functions (Asymptotic notations),	
Recurrences, Solution of Recurrences by substitution, Recursion tree method, Master Method,	
Analysis of Searching and Sorting Techniques: Brute Force Technique, Selection sort, Bubble	
sort.	
UNIT-II: 10hrs	
Divide and Conquer: Merge sort, Quick sort, Time complexity analysis for Merge and Quick	
sort.	
Transform and Conquer: Balanced search tree, Heaps and Heap sort. Dynamic Programming	
algorithms: Matrix Chain Multiplication, Elements of Dynamic Programming, Longest Common	
Subsequence, 0/1 Knapsack problem.	
UNIT-III: 10hrs	
Greedy Algorithms: Activity Selection Problem, Elements of Greedy Strategy, Fractional	
Knapsack Problem, Huffman Codes. Graph Algorithm - BFS and DFS, Minimum Spanning	
Trees, Kruskal algorithm, Prim's Algorithm, Single Source Shortest paths, Bellmen Ford	
Algorithm, Dijkstra's Algorithm.	
UNIT-IV: 10hrs	
String matching, Rabin-Karp Algorithm, KMP Algorithms. Theory of NP-completeness: Complexity classes of P, NP, NP-Hard, NP complete. Polynomial reduction, Cook's theorem, discussion on SAT, CNF-SAT, Min vertex cover, max clique, Graph coloring.	
Text Book:	
1. T.H.Coreman et.al. Introduction to Algorithms,3 rd Edition,MIT press Cambridge, 2010.	
Reference Books:	
1.M. R. Kabat, Design and Analysis of Algorithms, 1 st Edition, PHI, 2013.	
 S. Sridhar, Design and Analysis of Algorithms, Oxford University Press,2015. E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms, 2ndEdition,ComputerScience press, 2010. 	

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to
CO1	Describe asymptotic notation, its properties and use it in measuring algorithm behaviour
CO2	Apply mathematical principles in analysis of algorithms to solve real world problems
CO3	Analyze and apply the complexities of various algorithms and select the best one
CO4	Know the different strategies that are known to be useful in finding efficient algorithms to
	solve problems and to be able to apply them in real scenario
CO5	Choose appropriate data structures and algorithms and use it to design algorithms for a
	specific problem

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2		2	3	2	1	3	3	3
CO2	2	2	3	2	3	2	1	2	2	2
CO3	2	2	3	3	2	1	2	3	3	3
CO4	2	3	3	3	2	3	2	2	2	3
CO5	2	3	2	3	2	3	2	3	3	3

Course Code	CSC304A
Course Name	Data Science
Category	Programme Elective Course
Prerequisite	Statistics, Mathematics, Programming Knowledge

Paper-CSC304A	
Data Science	
UNIT-I:	8hrs
Brief Introduction to Data Science. Descriptive statistics, notion of probability, variance, covariance, covariance matrix, hypothesis testing	distributions, mean
UNIT-II:	8hrs
Introduction to Machine Learning: Supervised Learning, Decision Tree Indu Classification, Rule based Classification, K-Nearest Neighbour, Unsupervised Clustering, K-Means, Association rule mining, Apriori, FP-Tree	
UNIT-III:	12hrs
Attribute-oriented analysis: Attribute generalization, Attribute relevance, Statistical measures, Data pre-processing: Data cleaning, Data transformation, Predictive Modelling: Regression, Decision Tree, SVM.	-
UNIT-IV:	12hrs
Feature selection (Filters; Wrappers), Dimensionality reduction: PCA and LDA Ensemble Learning, Bagging, Boosting, Gradient Boosting (Random Forest, A Time Series Data Analysis: Introduction to Time Series, Correlation, Foreca Autoregressive Moving Average (ARMA) models, Autoregressive Integrate	daptive Boosting) asting (Univariate)
(ARIMA) models, Introduction to Deep Learning.	
Text Books:	
 Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk fro O'Reilly. 2014. James, G., Witten, D., Hastie, T., Tibshirani, R. An introduction to statist applications in R. Springer, 2013.Joel Grus, Data Science from Scratch: Fin Python. 1st Edition. Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data M 4. Laura Igual and Santi Seguí, Introduction to Data Science, Springer. 	tical learning with rst Principles with
Reference Books:	
1.Han, J., Kamber, M., Pei, J. Data mining concepts and techniques. Morgan K 2. "Practical Data Science with R". Nina Zumel, John Mount, Manning, 2014.	Kaufmann, 2011.

- 2. "Practical Data Science with R". Nina Zumel, John Mount. Manning, 2014.
- 3. Davy Cielin, Arno Meysman, Mohamed Ali, Introducing Data Science, Manning
- 4. Andreas, Practical Data Science, Apress

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Develop in depth understanding of the key technologies in data science and business
	analytics: data mining, machine learning, visualization techniques, predictive modelling,
	and statistics.
CO2	Practice problem analysis and decision-making.
CO3	Gain practical, hands-on experience with statistical programming languages and tools
	through coursework and applied research experiences.
CO4	Analyze and interpret data using an ethically responsible approach.
CO5	Apply data science concepts and methods to solve problems in real-world contexts and
	will communicate these solutions effectively.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		2		2			1	1	1
CO2	3		3		3			3	3	3
CO3	3		3		3			3	3	3
CO4	3		3		3			3	3	3
CO5	3		3		3			3	3	3

Course Code	CSC304B
Course Name	WEB TECHNOLOGY
Category	Programme Elective Course
Prerequisite	Knowledge of Internet basics, Database and object
	oriented programming

Paper-CSC304B

Web Technology

UNIT-I:

Web Essentials: Clients, Servers, and Communication. The Internet-Basic Internet Protocols -The World Wide Web-HTTP request message-response message-Web Clients Web Servers-Case Study. Markup Languages: XHTML. An Introduction to HTML History-Versions-Basic XHTML Syntax and Semantics-Some Fundamental HTML Elements-Relative URLs-Lists-tables-Frames-Forms-XML Creating HTML Documents-Case Study.

UNIT-II:

Style Sheets: CSS-Introduction to Cascading Style Sheets-Features-Core Syntax-Style Sheets and HTML Style Rule Cascading and Inheritance-Text Properties-Box Model-Normal Flow Box Layout-Beyond the Normal Flow-Other Properties-Case Study. Client-Side Programming: The JavaScript Language-History and Versions Introduction to JavaScript in Perspective-Syntaxand Data Types-Statements-Operators-Literals-Functions-Objects-Arrays-Built-in Variables Objects-JavaScript Debuggers.

UNIT-III:

PHP: Introducing PHP, PHP Language Basics-Using variables, Understanding Data Types, Operators and Expressions, Constants. Decisions and Loops-Making Decisions, Doing Repetitive Tasks with Looping, Mixing Decisions and Looping with HTML. Strings-Creating and Accessing Strings, Searching Strings, Replacing Text with strings, Dealing with Upper and Lowercase, Formatting Strings. Arrays-Creating Arrays, Accessing Array Elements, Looping Through Arrays with for-each, Working with Multidimensional Arrays, network and Manipulating Arrays. Functions, writing your own Functions, Working with References, Writing Recursive Functions. Objects-Introduction OOP Concepts, Creating Classes and Objects in PHP, Creating and using Properties, Working with Methods.

UNIT-IV:

12hrs

PHP MySQL: Handling HTML Forms with PHP-How HTML form works, Capturing Form Data with PHP, Dealing with Multi-Value Fields, Generating Web Forms with PHP, Storing PHP Variables in Forms, Creating File Upload Forms, Redirecting After a Form Submission. Introducing Databases and SQL-Deciding How to Store Data, Understanding Relational Databases, Setting Up MySQL, A Quick Play with MySQL, Connecting MySQL from PHP. Retrieving Data from MySQL with PHP-Setting Up the Book Club Database, Retrieving Data with SELECT, Creating a Member Record Viewer. Manipulating MySQL Data with PHP-Inserting, Updating, and Deleting Records.

Text Books:

1. M. Doyle, Beginning PHP 5.3, 1st Edition, John Wiley & Sons, 2011.

2. J. Duckett, Beginning HTML, XTML, CSS and JavaScript, 1stEdition, John Wiley & Sons, 2011 **Reference Book:**

8hrs

12hrs

8hrs

1. L. Welling, L. Thomson, PHP and MySQL Web Development, 1st Edition, Sams Publishing, 2003.

COURSE OUTCOMES:

Γ

	After completion of this course successfully, the students will be able to
CO1	Identify basic HTML elements, XML elements and develop static webpages.
CO2	Describe different styles in web page design. Apply style sheets and java script to prepare
	elegant webpages with client side validations.
CO3	Implement server side business logic into dynamic web pages using PHP.
CO4	Use PHP to design user interactive forms for data entry with proper validation.
CO5	Develop aesthetic web applications with database connectivity using PHP.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		1	1	1		1	1	1	1
CO2	3		2	2	2		2	2	2	2
CO3	3		3	3	3		3	3	3	3
CO4	3		3	3	3		3	3	3	3
CO5	3		3	3	3		3	3	3	3

Course Code	CSC304C
Course Name	INFORMATION SECURITY
Category	Programme Elective Course
Prerequisite	Computer Network

Paper-CSC304C	
Information Security	
UNIT-I:	8hrs
Attacks on Computers and Computer Security: Introduction, The need for s	ecurity, Security
goals, Security attacks(Attack on Confidentiality, Integrity, Availability)Security	y Services and
Mechanisms, Techniques(Cryptography,Steganography).	
Introduction to plain text and cipher text, encryption and decryption. substitu	ution techniques,
transposition techniques, symmetric and asymmetric key cryptography, steganog	graphy, possible
types of cryptanalysis attacks.	
UNIT-II:	12hrs
Symmetric key Ciphers: Block Cipher principles &Algorithms(DES, A	AES, Blowfish),
Differential and Linear Cryptanalysis, Block cipher modes of operation,	Stream ciphers
RC4,Location and placement of encryption function.	
Introduction to number theory-Prime numbers, Euler's Phi-Function, Ferma	at's and Euler's
theorem, Chinese Remainder Theorem, Generating Primes (Mersen	nnePrime,Fermat
Prime), Primality testing (Deterministic algorithms, Probalistic algorithms)	
Asymmetric key Ciphers: Principles of public key cryptosystems, Algorithm	ms(RSA, Diffie-
Hellman), Key Distribution.	
UNIT-III:	10hrs
Message Authentication Algorithms and Hash Functions: Message	
(MDC,MAC)Nested MAC,HMAC,CMAC,Whirlpool. Hash functions: MD5	• •
algorithm,SHA-1. Digital signatures, Authentication Applications: K	erberos, X.509
Authentication Service, Public — Key Infrastructure, Biometric Authentication.	
UNIT-IV:	10hrs
E-Mail Security: Pretty Good Privacy, S/MIME IP Security: IP Security overv	view, IP Security
architecture, Authentication Header, Encapsulating security payload, Com	nbining security
associations, key management.	
Web Security: Web security considerations, Secure Socket Layer and Transport	t Layer Security,
Secure electronic transaction. Intrusion Detection System(types, techniques).	
Intruders, Virus and Firewalls: Intruders, Intrusion detection, password management,	, Virus and related
threats, Countermeasures, Firewall design principles, Types of firewalls.	
Text Book:	
1. B. A. Forouzan, D. Mukhopadhyay, Cryptography and Network Security, 2 nd H	Edition, McGraw
Hill, 2008.	

Reference Books:

- A. Kahate, Network Security, 2nd Edition, McGraw Hill, 2008.
 W. Stalling, Cryptography and Network Security, 7th Edition, Pearson Education

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Analyze the working of various Symmetric and Asymmetric key cryptographic
	algorithms for information security purpose
CO2	Identify the basic categories of threats in a networks
CO3	Able to demonstrate the design and use of hash functions, digital signatures, and key
	distribution with a wide range of key types
CO4	Discuss about Web security and Firewalls
CO5	Discuss about Intrusion Detection system.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PS1	PS2	PS3
CO1	2	2	2	1	3	1	1	2	2	1
CO2	2	1	2	1	2	1	1	2	1	2
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	1	2	1	2	2	2	1
CO5	2	2	2	2	2	2	2	2	2	2

Course Code	CSC 304D
Course Name	DIGITAL IMAGE PROCESSING
Category	Program Elective Course
Prerequisite	Basics of Digital Electronics and Basic
	understanding of calculus

Paper-CSC304D	
	Digital Image Processing

 UNIT-I:
 08hrs

 Digital Image Fundamentals and Transforms: Elements of visual perception: Light, Brightness adaption and discrimination, Pixels, coordinate conventions, Imaging Geometry, Image sampling and quantization Basic relationship between pixels: Basic geometric transformations-Introduction to Fourier Transform and DFT : Properties of 2D Fourier Transform , FFT, Separable Image Transforms ,Walsh – Hadamard – Discrete Cosine Transform, Haar, Slant – Karhunen – Loevetransforms.Perspective Projection, Spatial Domain Filtering, sampling and quantization

 UNIT-II:
 08hrs

Image Enhancement Techniques: Spatial Domain methods: Basic grey level transformation, Histogram equalization, Image subtraction, Image averaging, Spatial filtering: Smoothing, sharpening filters,Laplacian filters, Frequency domain filters : Smoothing, Sharpening filters,Homomorphic filtering.

UNIT-III:

16hrs

Image Restoration and Image Compression: Model of Image Degradation/restoration process: Noise models, inverse filtering, least mean square filtering, constrained least mean square filtering, blind image restoration, Pseudo inverse, Singular value decomposition.

Lossless compression: Variable length coding: LZW coding, Bit plane coding- predictive coding, DPCM.

Lossy Compression: Transform coding – Wavelet coding – Basics of Image compression standards: JPEG, MPEG, Basics of Vector quantization

UNIT-IV:

08hrs

Image Segmentation and Representation: Edge detection: Thresholding, Region Based segmentation, Boundary representation: chair codes, Polygonal approximation, Boundary segments: boundary descriptors: Simple descriptors, Fourier descriptors, Regional descriptors, Simple descriptors, Texture.

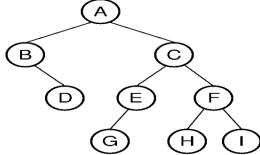
Text Book:

1.Rafael C Gonzalez and Richard E Woods ,Digital Image Processing, 4th Edition, Prentice Hall,2002.

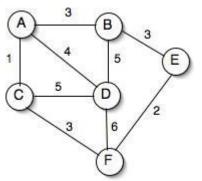
Reference Books:

- 1. Anil K Jain ,Fundamentals of Digital Image Processing, Prentice Hall
- 2. William K Pratt, John Willey ,Digital Image Processing, 4th Edition, CRC Press,2001.
- 3. Milan Sonka, Vaclav Hlavac, Roger Boyle, Image Processing Analysis and Machine Vision, 4th Edition.
- 4. B. Chanda, D. DuttaMagundar ,Digital Image Processing and Analysis,2nd Edition, Prentice Hall of India, 2000.

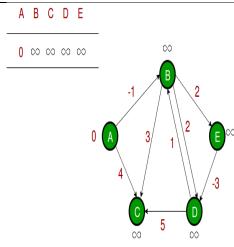
	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Understand the need for image transforms and their properties
CO2	Develop any image processing application.
CO3	Understand the rapid advances in Machine vision
CO4	Learn different techniques employed for the enhancement of images
CO5	Understand a digital image and different processing techniques for the better analysis of an
	image


	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2			1	1		2	3	3	3
CO2	3	3	2	2	2	1	3	2		
CO3	2	3	1	3	2	1	2		2	3
CO4	2			3	3	1	3		2	3
CO5	2	1	3	3	3	3	3	2	3	3

Paper-CSC305


Lab III: Algorithms and DBMS

ALGORITHM PROGRAMS:


- 1. Sort a given set of elements using Selection Sort and Merge Sort and determine the time taken to sort the elements. The elements can be read fromafileorcanbe generated using the random number generator.
- 2. Sort a given set of elements using Merge Sort and Quick Sort and determine the time taken to sort the elements. The elements can be read fromafileorcanbegenerated using the random number generator.
- 3. Implement 0/1 Knapsack problem using dynamic programming.
- 4. Perform various tree traversal algorithm for the given tree.

- 5. Print all the nodes reachable from a given starting node in a digraph using BFS method.
- 6. Check whether a given graph is connected or not using DFS method.
- 7. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 8. Find the Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.

9.Implement Bellmen Ford algorithm as per the given input and output

Input: Graph and a source vertex

Output: Shortest distance to all vertices from the source. If there is a negative weight cycle, then shortest distances are not calculated, negative weight cycle is reported.

10.From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm

DBMS PROGRAMS:

1. Creation of a tables using create command and writing SQL queries to retrieve information from the tables.

2. Implement data definition languages (Create, Alter, Drop, Truncate, and Rename) & data manipulation languages (Insert, Update, and Delete) for updating and viewing records.

3. Implement SELECT command with different clauses (where clause, having clause, group by clause, order by clause).

4. Implement Single Row function (character, numeric, data functions).

5. To implement Group function (AVG, MIN, MAX, SUM).

6. Implement various types of integrity constraints (NOT NULL Constraint, DEFAULT

Constraint, UNIQUE Constraint, PRIMARY Key, FOREIGN Key, CHECK Constraint).

7. Creation of Views, Synonyms, Sequence, Indexes, Save point.

8. Creating relationship between tables.

9. Implementation of PL/SQL block.

10. Write a PL/SQL block to satisfy some conditions by accepting input from theuser.

11. Write a PL/SQL block that handles all types of exceptions.

Course Code	CSC306A
Course Name	NETWORK AND INTERNET
	TECHNOLOGIES
Category	IDSE course
Prerequisite	Basic Mathematics
-	

IDSE-Paper-CSC306A
Network and Internet Technologies
UNIT-I: 10hrs
Computer Networks: Introduction to computer network, datacommunication, components
of data communication, data transmission mode, data communication measurement, LAN, MAN, WAN, wireless LAN, internet, intranet, extranet.
Network Models: Client/ server network and Peer-to-peer network, OSI, TCP/IP,
layersandfunctionalities.
UNIT-II: 10hrs
Transmission Media: Introduction, Guided Media: Twisted pair, Coaxial cable, Opticalfiber.
Unguided media: Microwave, Radio frequency propagation, Satellite. LAN Topologies: Ring, bus,
star, mesh and treetopologies.Network Devices: NIC, repeaters, hub, bridge, switch, gateway
androuter.Internet Terms: Web page, Home page, website, internet browsers, URL, Hypertext,
ISP, Web server, download and upload, online and offline.
UNIT-III: 10hrs
Introduction to Web Design: Introduction to hypertext markup language (html) Document type
definition, creating web pages, lists, hyperlinks, tables, web forms, inserting images, frames,
hosting options and domain name registration.
UNIT-IV: 10hrs
Style Sheets: CSS-Introduction to Cascading Style Sheets-Features-Core Syntax-StyleSheets and
HTML Style Rule Cascading and Inheritance-Text Properties-Box Model-Normal Flow Box
Layout-Beyond the Normal Flow-Other Properties-Case Study.
Client-Side Programming: The JavaScript Language-History and Versions Introduction to

Client-Side Programming: The JavaScript Language-History and Versions Introduction to JavaScript in Perspective-Syntax-Variables and Data Types-Statements-Operators-Literals-Functions-Objects-Arrays-Built-in Objects-JavaScript Debuggers.

Text Book:

1.J. A. Ramalho, Learn Advanced HTML 4.0 with DHTML, BPB Publications, 2007

Reference Books:

1.B. A. Forouzan, Data Communication and Networking ,5th Edition, Tata McGrawHill, 2008.

2.D.R. Brooks, An Introduction to HTML and Javascript for Scientists and Engineers, 1stEdition,Springer, 2007.

3.Wendy Willard, HTML A Beginner's Guide, 4th Edition, Tata McGraw-Hill Education.

4.J. A. Ramalho, Learn Advanced HTML 4.0 with DHTML, 1st Edition, BPB Publications

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Understand the fundamental concepts of Computer networks with architecture.
CO2	Basic Concept of various Network Devices
CO3	Understand the basic concept of transmission media, LAN topology.
CO4	Understand Fundamentals of Web Design
CO5	Develop Web Applications using Web Technologies

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PS1	PS2	PS3
CO1	2	2	2	1	2	1	1	2	2	1
CO2	2	2	2	1	2	1	2	2	2	1
CO3	2	2	2	2	2	1	2	2	2	1
CO4	2	2	2	1	2	1	2	2	2	2
CO5	2	2	2	1	2	1	3	2	2	2

Course Code	CSC306B
Course Name	FUNDAMENTALS OF COMPUTER
Category	IDSE course
Prerequisite	Basic Mathematics
-	

DSEPaper-CSC306B
FUNDAMENTALS OF COMPUTER
INIT-I: 10hrs
Computer Basics : Simple model of computer, Problem solving using computer(flowchart, rogram, working of a computer, hardware and software). Data Representation : Character epresentation, representation of integers and fractions, Decimal to Binary conversion. Input / butput Units.
INIT-II: 10hrs
Iemory System : Basics concepts (RAM, ROM, Speed, Size and Cost) Cache Memory concepts, Pache Memory mapping technique, Virtual Memory concepts, Secondary Storage, Processor: tructure of Instructions, Description of a processor, Machine Language program, Algorithm to mulate the hypothetical computer.
INIT-III: 10hrs
inary Arithmetic : Addition, Subtraction, Signed numbers, Two's complement representation of umbers, Addition/ Subtraction of numbers in 2's complement notation, binary multiplication, inary division, floating point representation of numbers, arithmetic operation with normalized oating point numbers.
Init-IV: 10hrs
ogic circuit: Switching circuits, AND, OR, NOT operation, Boolean functions, canonical forms
f Boolean function, Logic circuits, Computer Architecture : Interconnection of Units, Processor
Memory communication, I/O devices to processor communication, Bus Architecture of personal
omputers. Introduction to Programming Language, Operating System.
ext Books:
. V.Rajaraman and N.Adabala, Fundamental of Computers, PHI, 2014
. A.Goel, Computer Fundamentals, Pearson Education, 2010
eference Books:
. P.Aksoy, L.DeNardis, Introduction to Information Technology, Cengage Learning, 2006.
. P.K.Sinha, P.Sinha, Fundamental of Computers, 8 th Edition ,BPB Publishers,2007.

2. P.K.Sinha, P.Sinha, Fundamental of Computers, 8th Edition ,BPB Publishers,2007.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Describe the basic of computer.
CO2	Classify the architectural level of the system
CO3	Explain the memory and its related concepts of the system.
004	
CO4	Evaluates the complements of the numbers both for positive and negative numbers.
CO5	Discuss the concepts of Programming languages and its basic classifications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PS1	PS2	PS3
CO1	2	1	1	1	2	1	1	1	1	1
CO2	2	1	1	1	2	1	1	1	1	1
CO3	2	1	1	1	2	1	1	1	1	1
CO4	2	1	1	1	2	1	1	1	1	1
CO5	2	2	2	1	2	1	2	2	2	2

Course Code	CSC306C
Course Name	INTRODUCTION TO PROGRAMMING
	USING PYTHON
Category	IDSE course
Prerequisite	Basic analytical and logical understanding
	including basic knowledge and usage of
	computers is required for this course. Prior
	experience with any other programming
	language will be beneficial.

IDSE Paper-CSC306C
INTRODUCTION TO PROGRAMMING USING PYTHON
UNIT-I: 10hrs
Introduction: Installation, First python Program: Interactive Mode Programming, Script Mode Programming, Identifiers, Reserved words, Lines and Indentation, Multi-Line Statements Quotation &Comments,; Assigning values to Variables, Multiple Assignment.
UNIT-II: 10hrs
Standard Data Types: Numbers, Strings, Lists, Tuples, Dictionary; Data type conversion; Basic Operators: Arithmetic, Comparison, Assignment, Bitwise; Operators: Logical, Membership Identity; Operators Precedence; Python Numbers & Mathematical functions. Data type conversion: Basic operators: Arithmetic, Comparison, Assignment, Bitwise; Basic Operators. Python Numbers & Mathematical functions, Python Strings.
UNIT-III: 12hrs
Python Statement and Loops : if, if-else, while, for loop, break, continue, pass, python function: Files I/O. Functions: Definition, call, positional and keyword parameter, Default parameters, variable
number of arguments, Modules – import mechanisms, Functional programming – map, filter reduce, max, min, lambda function – list comprehension.
UNIT-IV: 08hrs
Object Oriented Programming : classes and objects, Inheritance –Polymorphism overloading Error handling and Exceptions – try, except and raise- exception propagation File Processing : reading and writing files.
Text Books:
 Nischay Kumar Hegde ,Python Programming Fundamentals – A Beginner's Handbook, 1^s Edition, Educreation Publishing.
Reference Books:

1. Martin C. Brown ,The Complete Reference :Python.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Operate the installation of the software and its operation.
CO2	Memorize the programming elements of the Python language.
CO3	Break down the real world problems and model them using the data structures available in Python.
CO4	Design the programs using conditional and loop structures used in Python.
CO5	Explore the reusable structures in Python and compare this language with other languages to see its benefits.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3				1		1	1	1	1
CO2	3		2	1	1		1	2	1	2
CO3	3		3	2	2		2	3	2	3
CO4	3		3	3	2		3	3	2	3
CO5	3		3	3	2		3	3	3	3

Course Code	CSC 306D
Course Name:	ARTIFICIAL INTELLIGENCE
Category:	IDSE Course
Prerequisite:	Linear Algebra, Programming Language

Paper-CSC306D

Artificial Intelligence

UNIT-I:

Introduction to Artificial Intelligence, AI Problems, AI Techniques, Problems, Problem Space and Search, Defining the problem as a state space search, Production system, Problem characteristics, **Heuristic search Technologies:** Generate and Test, Hill Climbing, Best First Search, Problem Reduction, means-end-analysis, optimal and A*, AND-OR Graphs, AO* Algorithms.

UNIT-II:

Representation Knowledge using Predicate Logic, Representing simple facts in logic, Representing Instance and ISA relationships, Computable functions and Predicates, Resolution, Representing Knowledge using Rules, Forward Vs Backward Reasoning, Matching, Control Knowledge, Weak slot and Filter structures, Semantic nets, Frames

UNIT-III:

10hrs

10hrs

10hrs

Strong slot and Filter structures, Conceptual Dependencies, Scripts. Introduction to Non monotonic reasoning ,Logics for Non monotonic reasoning, Implementation : Depth First Search, Dependency-Directed Back Tracking, Justification based Truth Maintenance Logic based Truth Maintenance systems,Statistical Reasoning, Probability and Bayes Theorem,Certainty factors, Rule based Systems, Beyesian Networks, Dempster-Shaffer Theory

UNIT-IV:

10hrs

Minmax search, alpha-beta cutoffs, Planning system, Goal stack planning, Hierarchical Planning, Natural Language Processing., Syntactic Analysis, Semantic Analysis, Discuses and Pragmatic Processing. Introduction and Fundamentals of Artificial Neural Networks, Biological Prototype, Artificial Neuron, Single Layer Artificial Neural Networks, Multilayer Artificial Neural Networks, Training of Artificial Neural Networks, Genetic Algorithms

Text Books:

1.Elaine Rich, Kevin Knight, & Shivashankar B Nair, Artificial Intelligence, 3rd Edition, McGraw Hill, ,2009.

2. Waserman , Neural Computing: Theory and Practice.

Reference Books:

- 1. George F. Lugar ,Artificial Intelligence: Structures and Strategies for Complex Problem Solving,6thEdition,Pearson Education
- 2. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Pearson Education, 2010.
- 3. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems, PHI.
- 4. Simon Haykin, Neural Networks: A Comprehensive Foundation , 2nd Edition, Pearson Education.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Explore agents, environments, and search goal state using uninformed techniques in a state
	space.
CO2	Interpret logic, inference rules for decision making, and represent knowledge using
	semantic nets & frames.
CO3	Apply planning and reasoning to handle uncertainty in real life problems.
CO4	Design expert systems. to solve complex real-life problems.
CO5	Apply neural network and genetic algorithm to solve various mathematical and engineering
	problems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		2		2			1	1	1
CO2	3		3		3			3	3	3
CO3	3		3		3			3	3	3
CO4	3		3		3			3	3	3
CO5	3		3		3			3	3	3

Semester-IV

Course Code:	CSC401
Course Name:	MACHINE LEARNING
Category:	Programme Core Course
Prerequisite:	Basic knowledge of Mathematics

Paper-CSC401
Machine Learning
UNIT-I: 10hrs
Introduction to machine Learning ((Supervised, Unsupervised and Reinforcement learning), Learning Models (Classification, Regression, Clustering). Cluster Analysis, Partitioning Methods (k-Means, k-Medoids), Hierarchical Methods, Density- Based Methods, Evaluation of Clustering.
UNIT-II: 10hrs
Conditional Probability, Bayes' Theorem, Naïve Bayes Classifier, K-nearest neighbour, Multiple linear regression, Shrinkage method, Ridge regression, Logistic regression, Linear Discriminant Analysis.
UNIT-III: 10hrs
Neural Networks - Introduction, McP Neural Network, Perceptron Learning, Neural Networks - Backpropagation, Neural Networks - Initialization, Training & Validation. Decision Tree, Decision Tree Induction, Attribute Selection Measures, Information Gain, Gain Ratio, ID3, C4.5, Gini Index, CART. UNIT-IV: 10hrs
Support Vector Machine for linearly separable data, Kernel function, Support Vector Machine for linearly non-separable data. Dimensionality reduction, Feature selection, Feature extraction, Principal Component Analysis.Model Cross- validation, Performance of Classification algorithms (Confusion Matrix, Precision and Recall).
Text Books:
 T. Hastie, R. Tibshirani,and J. Friedman, The Elements of Statistical Learning-Data Mining, Inference, and Prediction, 2nd Edition, Springer Verlag, 2009. S. Haykin, Neural Networks and Learning Machines, 3rdEdition, Pearson Education, 2009.
Reference Books:
 Y. G. James, D. Witten, T. Hastieand R. Tibshirani, An introduction to Statistical learning with Applications in R, Springer, 2013. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Explain the concepts of supervised machine learning and its functionalities.
CO2	Perform classification using Bayes classifier, SVM, Decision Tree, and Random Forest.
CO3	Reduce dimension of feature space using feature selection and feature extraction.
CO4	Explain the concepts of unsupervised machine learning and its functionalities.
CO5	Apply supervised and unsupervised machine learning methods to solve real life problems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3		3		3			3	3	3
CO2	3		3		3			3	3	3
CO3	3		3		3			3	3	3
CO4	3		3		3			3	3	3
CO5	3		3		3			3	3	3

Course Code	CSC402
Course Name	SOFTWARE ENGINEERING AND OOAD
Category	Programme Core Course
Prerequisite	Knowledge of software, object oriented concept
	and databases

Paper-CSC402	
Software Engineering and OOAD	
UNIT-I:	10 hrs
Introduction to Software and Software Engineering: Basic concepts about program, the nature of software, Evolution of Software Engineering, Stakehold engineering, Software quality, Software engineering projects, Activities commo projects, Basic concepts on process and life cycle models.	ders in software
Models: Waterfall, Prototype, Evolutionary, Incremental, Spiral, Agile, V-model JNIT-II :	08hrs
Requirement Analysis: System and software requirements, Types of software	re requirements.
Functional and non-functional requirements, Domain requirements, User require	ment Elicitation
nd analysis of requirements, Overview of requirement techniques, Viewpoint	ts, Interviewing
Scenario, Requirement validation, Requirement specification, Software requiremed SRS)Structure and contents, SRS format.	ent Specification
UNIT-III:	10hrs
ntroduction to Object Oriented Technology: Development and OO Modelling	History,
Modelling Concepts.	-
Dbject Oriented Analysis: Identifying Use-Cases, Complexity in Object Ori	iented Analysis
Business Process Modelling and Business Object Analysis, Use-Case Driven	•
Analysis, Use-Case Model.	~

Class Modelling: Object and class concepts, link and association, Generalization and Inheritance, Advanced class modelling- aggregation, state diagram, state diagram behaviour, Relation of Class and State models. Interaction Modelling: Sequence models, Activity Diagrams.

UNIT-IV:

12hrs

Software Project Management: Overview of Project Management, Responsibilities of Project Manager, Project Planning, Metrics for Project Size Estimation, Factors Influencing Project Management, Project Estimation Techniques, COCOMO Model, Scheduling, Work Breakdown Structures (WBS), Activity Network, Critical Path Method (CPM), Program Evaluation and Review Technique (PERT), GANTT Chart, Risk Management.

Software Testing: Testing overview, concepts, Scope of Testing, Testing Constraints, Testing Life Cycle, Levels of Testing, System Testing, Blackbox Testing, Whitebox Testing, Integration Testing, Acceptance Testing, Performance Testing (Load testing, Stress testing, Scalability Testing, Stability Testing, Volume Testing, Smoke Testing). Basic Concepts of Regression Testing(Need of Regression Testing, How to perform Regression Testing, Testing Tools).

Text Books:

1.R. Mall, Fundamentals of Software Engineering, 5th Edition, PHI, 2019.

2.R.S. Pressman, Software Engineering, A Practitioner's Approach, 7th Edition, McGraw-Hill, 2009

3.Timothy C. Lethbridge, Robert Laganière, Object-Oriented Software Engineering Practical Software development using UML and Java,2nd Edition, McGraw-Hill.

Reference Books:

1.Sommerville, Software Engineering, 9th Edition, Addison Wesley.

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Define software terminologies, and generic view of the software engineering process.
CO2	Describe the SDLC phases and apply suitable life-cycle model in building of software
	products based on their characteristics.
CO3	Apply object oriented analysis and design to build a software system.
CO4	Explain the scheduling, project management tasks and design artefacts.
CO5	Summarize different testing strategies and implement them appropriately.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	1	2	3	2	1			2		1
CO2	2	1		2		2			2	
CO3	2	3	2		3			3		2
CO4	1	3	1	1			3		1	
CO5	3	3	3		2	1		3		3

Course Code	CSC403
Course Name	CLOUD COMPUTING
Category	Programme Core Course
Prerequisite	Computer Networks and Operating Systems

Paper-CSC403

Cloud Computing

UNIT-I:

Distributed System Models and Enabling Technologies: scalable computing over the Internet, technologies for network-based systems, system models for distributed and cloud computing, software environments for distributed systems and clouds, performance, security, and energy efficiency.

UNIT-II:

Virtual Machines and Virtualization of Clusters and Data Centers: implementation levels of virtualization, virtualization structures/tools and mechanisms, virtualization of CPU, memory and I/O devices, virtual clusters and resource management, virtualization of data-center automation.

UNIT-III:

Cloud Platform Architecture over Virtualized Data Centers: cloud computing and service models, data-center design and interconnection networks, architecture design of compute and storage clouds, public cloud platforms: GAE, AWS (EC2 and S3) and Azure, inter-cloud resource management, cloud security and trust management.

UNIT-IV:

Cloud Programming and Software Environments: features of cloud and grid platforms, parallel and distributed programming paradigms, programming support of Google App Engine, Programming on Amazon AWS and Microsoft Azure, emerging cloud software environments **Advanced Topics in Cloud Computing and Applications**: Energy efficiency in clouds, marketbased management of clouds, federated clouds/intercloud, third-party cloud services, scientific applications: healthcare, biology, geoscience and business and consumer applications.

Text Books:

1.Kai Hwang, Geoffery C. Fox and Jack J. Dongarra, Distributed and Cloud Computing: Clusters, Grids, Clouds and the Future of Internet", 1st Edition, Morgan Kaufman Publisher, an imprint of Elsevier, 2012.

2.RajkumarBuyya, Christian Vecchiola and S. ThamaraiSelvi, "Mastering Cloud Computing: Foundations and Applications Programming, MK Publisher, Elsevier, 2013

Reference Books:

 Tom White, HadoopThe Definitive Guide, 4thEdition. O'Reilly, 2009.
 Ian Foster, Carl Kesselman, The Grid: Blueprint for a New Computing Infrastructure, 2nd Edition, Morgan Kaufmann.

14hrs

8hrs

8hrs

10hrs

3..P. K. Pattnaik, M. R. Kabat and S. Pal, Fundamentals of Cloud Computing, Vikas Publishing House Pvt. Ltd., 2015

	COURSE OUTCOMES:
	After completion of this course successfully, the students will be able to-
CO1	Ability to understand various service delivery models of a cloud computing architecture
CO2	Describe the concepts of service-oriented architecture
CO3	Analyze the different workflows of service-oriented architecture
CO4	Ability to understand the security challenges and address the challenges
CO5	Understand the ways in which the cloud can be programmed and deployed

Mapping of COs to POs (1: Low, 2: Medium, 3: High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	1	2	2	2		1	3	3	3
CO2	3	3	1	1	3		2	2	2	2
CO3	2	2	3	3	1		2	3	2	1
CO4	1	2	1	2	2		3	2	3	3
CO5	2	1	2	1	3		2	2	1	2

Paper-CSC404

Project Work Report and VIVA VOCE

Web-development project: Students must follow software engineering principles to make the project.

Research project: Students can take a research work, review the related literatures, then propose a method or implement an existing one.

MOOCs-1/MOOCs-2

Students are required to complete any **two** of the following MOOCs courses to earn a maximum of 6 credits duration anytime during his/her entire two years of MSc. Computer Science from**https://swayam.gov.in**. as well as **https://nptel.ac.in**.The course completion certificate of below said courses need to be submitted in the final year at the time of Project Viva.

1.An Introduction to Coding Theory	2.Big Data Computing
3. Computer Graphics	4. Applied Natural Language Processing
5.An Introduction to Artificial Intelligence	6.Google Cloud Computing Foundations
7. AI: Knowledge Representation and Reasoning	8.Probability for Computer Science
9. R	10.Computer Application in Business
11.Peer to Peer Networks	12.Animations
13. Parallel Algorithms	14. Distributed Computing systems
15.Pattern Recognition	16.Real Time Systems
17.Blockchain Architecture Design and use cases	18.Computational Complexity Theory
19.Deep learning	20.Data Analytics with Python
21.Embedded System Design	22.Android app using Kotlin
23.Introduction to Haskell programming	24. Human-Computer Interaction
25.Arduino	26.Software Project Management
27.Introduction to Soft computing	28.Computer Vision
29.Switching Circuits and Logic Design	30.Virtual Reality

Apart from the above courses if any student wishes to do any course from<u>https://swayam.gov.in</u>.aswellas <u>https://nptel.ac.in</u>(but it should not be taught in their course curriculum of 1st, 2nd , 3rd,4th Semesters) they are allowed to do so with a prior approval of HOD, Computer Science.