# **COURSES OF STUDIES**

# FOR PHDPROGRAM

## (UNDER SEMESTER SYSTEM)

(Effective from January 2022)



# GANGADHAR MEHER UNIVERSITY, SAMBALPUR, ODISHA

### **PROGRAM OUTCOMES(POs):**

- **PO1. Knowledge and Understanding**: Develop an ability to understand the theoretical foundations of computer science for designing efficient methodologies along with the knowledge of limitations of computing.
- **PO2.** General, Technical and Professional Skills: An ability to function effectively as an individual with diversified skills or as a part of a multi-disciplinary team setting to accomplish defined goals.
- **PO3.** Application of Knowledge and Skills: Developing problem analysis skills and knowledge and applying the same in real life situation.
- **PO4. Research Skills:** Explore research based knowledge and carry out academic investigations on the cutting edge technologies in allied subjects of Computer Science.
- **PO5.** General Learning Outcomes: Create, select and apply advanced techniques and tools including modelling complex activities related to Computer Science.
- **PO6.** Constitutional, Humanistic, Ethical and Moral Values: Design, develop and evaluate new system components or processes of computer science that meet the desired needs with appropriate considerations of industry, society, public health, safety, culture, environment and sustainable development sticking on to the ethics and values.
- **PO7: Employability Job Skills and Entrepreneur Skills:** Prepare the students to take up a career as versatile contributors in industry, academia, research and development or entrepreneurship employing their expertise to advance personal growth while making meaningful contributions to societal progress

### **PROGRAM SPECIFIC OUTCOMES(PSOs):**

**PSO1**. To shield students from the rapid obsolescence of computer technology, the program focuses on imparting foundational knowledge, fostering critical thinking skills, and cultivating technical expertise.

**PSO2**. Apply principles of computer science theory and concepts of software development to create effective computing-based solutions.

**PSO3**. Empowering the students to function as adept computer science professionals across various domains, including industry, advanced studies, research and development, academia, or entrepreneurship.

## SEMESTER SYSTEM OFPh.D.

| Sl<br>No. | Paper                            | Semester | Credit | (Marks)<br>Mid Term + Term End | Teaching<br>Hours |
|-----------|----------------------------------|----------|--------|--------------------------------|-------------------|
| 1         | 711(Departmental)                | Sem-1    | 4      | 100<br>(20+80)                 | 48Hrs             |
| 2         | 712( Research<br>Methgodology-1) | Sem-1    | 4      | 100<br>(20+80)                 | 48Hrs             |
| 3         | 713( Research<br>Methgodology-2) | Sem-1    | 4      | 100<br>(20+80)                 | 48Hrs             |
| 4         | 714<br>Review Work               | Sem-1    | 4      | 200(150+25+25)                 | 48Hrs             |
| TOTAL     |                                  |          | 20     | 500                            | 160 Hrs           |

## SEMESTER-1 Paper-711 Theory-Compulsory Marks: 80+20 (Credits: 4)

## List of Electives

| 711A | Data Warehousing and Mining |
|------|-----------------------------|
| 711B | Wireless Sensor Networks    |
| 711C | Internet of Things          |
| 711D | Machine Learning            |
| 711E | Information Security        |
| 711F | Soft computing              |
| 711G | Digital Image Processing    |
| 711H | Data Science                |

| Course Code:  | 711A                                                                    |
|---------------|-------------------------------------------------------------------------|
| Course Name:  | DATA WAREHOUSING AND MINING                                             |
| Category:     | Programme Elective Course                                               |
| Prerequisite: | Data Structure and Algorithm, Linear Algebra, Basics of Web programming |

| Paper – 711A                                                                                   |
|------------------------------------------------------------------------------------------------|
| Data Warehousing and Mining                                                                    |
| UNIT-I: 10hrs                                                                                  |
| Evolution of Decision Support Systems- Data warehousing Components -Building a Data            |
| warehouse, Data Warehouse and DBMS, Data marts, Metadata, Multidimensional data model,         |
| OLAP vs OLTP, OLAP operations, Data cubes, Schemas for Multidimensional Database: Stars,       |
| Snowflkes and Fact constellations.                                                             |
| UNIT-II: 10hrs                                                                                 |
| Types of OLAP servers, 3-Tier data warehouse architecture, distributed and virtual data        |
| warehouses. Data warehouse implementation, tuning and testing of data warehouse. Data Staging  |
| (ETL) Design and Development, data warehouse visualization, Data Warehouse Deployment,         |
| Maintenance, Growth, Business Intelligence Overview- Data Warehousing and Business             |
| Intelligence Trends - Business Applications.                                                   |
| UNIT-III: 10hrs                                                                                |
| Data mining-KDD versus datamining, Stages of the Data Mining Process-task premitives, Data     |
| Mining Techniques -Data mining knowledge representation – Data mining query languages,         |
| Integration of a Data Mining System with a Data Warehouse – Issues, Data preprocessing – Data  |
| cleaning, Data transformation, Feature selection, Dimensionality reduction, Discretization and |
| generating concept hierarchies-Mining frequent patterns- association-correlation.              |
| Decision Tree Induction - Bayesian Classifiation - Rule Based Classifiation - Classifiation by |
| Back propagation – Support Vector Machines – Associative Classifiation – Lazy Learners –       |

### Other Classifiation Methods.

10hrs

Clustering techniques – , Partitioning methods- k-means Hierarchical Methods - distance-based agglomerative and divisible clustering,

Mining complex data objects, Spatial databases, temporal databases, Multimedia databases, Time series and Sequence data; Text Mining –Graph mining-web mining-Application and trends in data mining

### **Text Books:**

**UNIT-IV:** 

- 1. J. Han and M. Kamber, Data Mining: Concepts and Techniques, 3<sup>rd</sup> Edition, Morgan Kaufmann Publishers, 2011.
- 2. A. Berson and S. J. Smith, Data Warehousing, Data Mining & OLAP, 1<sup>st</sup> Edition, TataMc Graw Hill, 2007.
- 3. G. K. Gupta, Introduction to Data Min Data Mining with Case Studies, Easter Economy Edition, Prentice Hall of India, 2006.

### **Reference Books:**

- 1. M. Kantardzic, Data mining concepts, models, methods, and algorithms, Wiley Inter science, 2003.
- 2. Witten, and E. Frank, Data Mining; Practical Machine Learning Tools and Techniques, third edition, Morgan Kaufmann, 2011.
- 3. G. M. Marakas, Modern Data Warehousing, Mining and Visualization, Prentice Hall, 2003

|            | COURSE OUTCOMES:                                                                      |
|------------|---------------------------------------------------------------------------------------|
|            | After completion of this course successfully, the students will be able to-           |
| <b>CO1</b> | Describe the requirement of a data warehouse and its components.                      |
| <b>CO2</b> | Explain the data warehouse life cycle.                                                |
| <b>CO3</b> | Explain the concepts of data mining and data pre-processing.                          |
| <b>CO4</b> | Analyze different classification algorithms and apply the same to real life problems. |
| <b>CO5</b> | Apply different clustering algorithms for solving problems in various domains.        |

|            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|------------|------|------|------|
| CO1        | 2   |     |     |     |     |     | 1          | 2    | 2    | 2    |
| CO2        | 2   |     |     |     |     |     | 1          | 2    | 2    | 2    |
| CO3        | 3   |     | 2   | 2   |     |     | 2          | 3    | 3    | 3    |
| <b>CO4</b> | 3   |     | 3   | 3   | 3   |     | 3          | 3    | 3    | 3    |
| CO5        | 3   |     | 3   | 3   | 3   |     | 3          | 3    | 3    | 3    |

| Course Code  | 711B                            |
|--------------|---------------------------------|
| Course Name  | WIRELESS SENSOR NETWORKS        |
| Category     | Programme Elective Course       |
| Prerequisite | Basic Idea of Computer Networks |

| Paper –711 B                                                                                    |
|-------------------------------------------------------------------------------------------------|
| Wireless Sensor Networks                                                                        |
| UNIT-I: 10hrs                                                                                   |
| Introduction: Networked wireless sensor devices, Applications: Habitat Monitoring, Smart        |
| Transportation, Key design challenges. Network deployment: Structured versus randomized         |
| deployment, Network topology, Connectivity. Introduction to cloud system, Sensor Cloud          |
| Systems, Challenges in Sensor Cloud Systems.                                                    |
| UNIT-II: 08hrs                                                                                  |
| Localization: issues & approaches, Coarse-grained & Fine-grained node localization, Network-    |
| wide localization. Wireless characteristics: Basics, Wireless link quality, Radio energy        |
| considerations, SINR capture model for interference.                                            |
| UNIT-III: 10hrs                                                                                 |
| Issues in designing MAC protocol for WSNs, Classification of MAC Protocols, Energy efficiency   |
| in MAC protocols, Asynchronous sleep techniques, Sleep-scheduled techniques.                    |
| Classification of Energy Management Schemes Sleep-based topology control: Constructing          |
| topologies for connectivity, constructing topologies for coverage.                              |
| UNIT-IV: 12hrs                                                                                  |
| Routing: Metric-based approaches, Routing with diversity, Multi-path routing, Lifetime-         |
| maximizing energy-aware routing techniques, Geographic routing. Data-centric routing, Data-     |
| gathering with compression, Querying, Data-centric storage and retrieval, The database          |
| perspective on sensor networks.                                                                 |
| Text Books:                                                                                     |
| 1. Kazem Sohraby, Daniel Minoli, TaiebZnati, Wireless Sensor Networks: Technology, Protocols,   |
| and Applications, Wiley Inter Science.                                                          |
| 2. Bhaskar Krismachari, Networking Wireless Sensors Cambridge University Press                  |
| Reference Books:                                                                                |
| 1. Edgar H. Callaway, Wireless Sensor Networks: Architectures and Protocols, Jr. Auerbach       |
| Publications, CRC Press.                                                                        |
| 2. Edited by C.S Raghavendra, Krishna M, Sivalingam, TaiebZnati, Wireless Sensor Networks,      |
| Springer.                                                                                       |
| 3. Victor Lesser, Charles L. Ortiz, and Milind Tambe, Distributed Sensor Networks: A Multiagent |
| Perspective, Kluwer Publications                                                                |
| 4 Feng Zhao, Leonidas Guibas, Morgan Kaufmann, Wireless Sensor Networks: An Information         |
| Processing Approach Series in Networking 2004                                                   |
| riocosing rippiouen, benes in retworking 2007.                                                  |

|            | COURSE OUTCOMES:                                                                        |
|------------|-----------------------------------------------------------------------------------------|
|            | After completion of this course successfully, the students will be able to-             |
| <b>CO1</b> | Define the basic concepts of wireless sensor networks, sensing, and challenges.         |
| <b>CO2</b> | Explain various deployment structures of wireless sensor networks.                      |
| <b>CO3</b> | Describe and explore localization, radio standards and wireless characteristics.        |
| <b>CO4</b> | Discuss the communication protocols adopted in wireless sensor networks and             |
|            | distinguish energy management schemes.                                                  |
| <b>CO5</b> | Analyze different routing techniques and identify various storage and retrieval issues. |

|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PSO1 | PSO2 | PSO3 |
|------------|------------|-----|-----|-----|-----|-----|------------|------|------|------|
| CO1        | 3          |     |     |     |     |     |            | 1    |      |      |
| CO2        | 3          |     | 1   | 1   | 1   |     | 1          | 1    | 1    | 1    |
| <b>CO3</b> | 3          |     |     | 1   | 1   |     | 1          |      | 1    |      |
| <b>CO4</b> | 3          |     | 2   | 2   | 2   |     | 2          | 2    | 2    |      |
| CO5        | 3          |     | 3   | 3   | 3   |     | 3          | 2    | 2    | 3    |

| Course Code  | 711C                            |
|--------------|---------------------------------|
| Course Name  | INTERNET OF THINGS              |
| Category     | Programme Elective Course       |
| Prerequisite | Basic Idea of Computer Networks |

| DSE Paper –711C                                                                                       |
|-------------------------------------------------------------------------------------------------------|
| Internet of Things                                                                                    |
| UNIT-I: 10hrs                                                                                         |
| Introduction to IoT, Basic requirements for building an IoT system, IoT reference framework, IoT      |
| network level – performance criteria.                                                                 |
| IoT devices: Sensors, Types of sensors and their functions: temperature, pressure, air pollution,     |
| proximity, infrared, moisture & humidity, flow, level, noise, and speed sensors. Characteristics of   |
| sensors. Use of RFID                                                                                  |
| Actuators, Types of actuators and their functions: electrical, mechanical, and hydraulic actuators,   |
| controlling IoT devices                                                                               |
| UNIT-II: 10hrs                                                                                        |
| IoT requirements for networking protocols, device addressing, credential management, wireless         |
| spectrum, determinism, security and privacy, application interoperability, semantic interoperability. |
| IoT Protocol Stack: layered view.                                                                     |
| Link layer: IEEE 802.15.4 technology, LoRaWAN end-to-end architecture, Time-Sensitive                 |
| Networking                                                                                            |
| Internet Layer: Routing Protocol for Low-Power and Lossy Networks.                                    |
| UNIT-III: 10hrs                                                                                       |
| Application Protocols Layer: Data Serialization Formats, Communication Paradigms:                     |
| Request/Response Versus Publish/Subscribe, Blocking Versus Non-blocking, QoS: Resource                |
| Utilization, Data Timeliness, Data Availability, Data Delivery                                        |
| IoT Application Protocols: CoAP, XMPP, MQTT, AMQP, SIP, IEEE 1888, and DDS RTPS.                      |
| Application Services Layer: ETSI M2M network architecture, oneM2M standards.                          |
| 101 Services Platform: Functions and Requirements, 101 Platform Manager, Discovery,                   |
| Communication Manager, Data Management, Management of IoT Devices, Configuration and Fault            |
| Management, Performance Management and measures                                                       |
| UNIT-IV: IUNIS                                                                                        |
| 101 security and Privacy: challenges, requirements, 101 Three-Domain Architecture, Attacks and        |
| Applications of LoT in areas like Smort home. Acriculture Healtheare, Industry, Transportation        |
| Applications of 101 in aleas like Small nome, Agriculture, Healthcare, industry, Hansportation,       |
| Ecosystems Models                                                                                     |
| Text Book.                                                                                            |
| 1 A Rayes and S Salam Internet of Things from Hype To Reality: The Road to Digitization 2nd           |
| Edition Springer 2019                                                                                 |
| Lunion, Springer, 2017.                                                                               |

|            | COURSE OUTCOMES:                                                                  |
|------------|-----------------------------------------------------------------------------------|
|            | After completion of this course successfully, the students will be able to-       |
| <b>CO1</b> | Describe basic concepts of IoT, its architecture and system design.               |
| <b>CO2</b> | Employ the communication mechanisms between sensors and systems using various     |
|            | protocols and network models.                                                     |
| <b>CO3</b> | Explain IoT with respect to machine to machine and design IoT systems with data   |
|            | synchronization and resource manipulation. Explore various application protocols. |
| <b>CO4</b> | Discuss and describe different security issues and challenges.                    |
| <b>CO5</b> | Identify real world applications of IoT in multidisciplinary domains.             |

|     | PO1 | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|------------|-----|------------|------------|------|------|------|
| CO1 | 3   |     | 2   |            | 1   |            |            | 1    | 3    | 3    |
| CO2 | 3   |     | 3   |            | 3   |            |            | 1    | 3    | 3    |
| CO3 | 3   |     | 3   |            | 3   |            |            | 1    | 3    | 3    |
| CO4 | 3   |     | 3   |            | 3   |            |            | 1    | 3    | 3    |
| CO5 | 3   |     | 3   |            | 3   |            |            | 1    | 3    | 3    |

| Course Code:  | 711D                           |
|---------------|--------------------------------|
| Course Name:  | MACHINE LEARNING               |
| Category:     | Programme Elective Course      |
| Prerequisite: | Basic knowledge of Mathematics |

| Paper-711D                                                                                            |
|-------------------------------------------------------------------------------------------------------|
| Machine Learning                                                                                      |
| UNIT-I: 10hrs                                                                                         |
| Introduction to machine Learning ((Supervised, Unsupervised and Reinforcement learning),              |
| Learning Models (Classification, Regression, Clustering).                                             |
| Cluster Analysis, Partitioning Methods (k-Means, k-Medoids), Hierarchical Methods, Density-           |
| Based Methods, Evaluation of Clustering.                                                              |
| UNIT-II: 10hrs                                                                                        |
| Conditional Probability, Bayes' Theorem, Naïve Bayes Classifier, K-nearest neighbour, Multiple        |
| linear regression, Shrinkage method, Ridge regression, Logistic regression, Linear Discriminant       |
| Analysis.                                                                                             |
| UNIT-III: 10hrs                                                                                       |
| Neural Networks - Introduction, McP Neural Network, Perceptron Learning, Neural Networks -            |
| Backpropagation, Neural Networks - Initialization, Training & Validation. Decision Tree,              |
| Decision Tree Induction, Attribute Selection Measures, Information Gain, Gain Ratio, ID3, C4.5,       |
| Gini Index, CART.                                                                                     |
| UNIT-IV: 10hrs                                                                                        |
| Support Vector Machine for linearly separable data, Kernel function, Support Vector Machine for       |
| linearly non-separable data.                                                                          |
| Dimensionality reduction, Feature selection, Feature extraction, Principal Component                  |
| Analysis. Model Cross- validation, Performance of Classification algorithms (Confusion Matrix,        |
| Precision and Recall).                                                                                |
| 1 T. Hartie, D. Tibelingsi and I. Esiadaran, The Elements of Statistical Learning Data Mining         |
| 1. I. Hasue, K. Hosnirani, and J. Friedman, The Elements of Statistical Learning-Data Mining,         |
| Interence, and Prediction, 2 <sup>-4</sup> Edition, Springer Verlag, 2009.                            |
| 2. S. Haykin, Neural Networks and Learning Machines, 5 <sup>-</sup> Edition, Pearson Education, 2009. |
| Keference Books:                                                                                      |
| 1. Y. G. James, D. Witten, T. Hastie and R. Tibshirani, An introduction to Statistical learning       |

with Applications in R, Springer, 2013.2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

|            | COURSE OUTCOMES:                                                                      |
|------------|---------------------------------------------------------------------------------------|
|            | After completion of this course successfully, the students will be able to-           |
| <b>CO1</b> | Explain the concepts of supervised machine learning and its functionalities.          |
| <b>CO2</b> | Perform classification using Bayes classifier, SVM, Decision Tree, and Random Forest. |
| <b>CO3</b> | Reduce dimension of feature space using feature selection and feature extraction.     |
| <b>CO4</b> | Explain the concepts of unsupervised machine learning and its functionalities.        |
| <b>CO5</b> | Apply supervised and unsupervised machine learning methods to solve real life         |
|            | problems.                                                                             |

|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PSO1 | PSO2 | PSO3 |
|------------|------------|-----|-----|-----|-----|------------|------------|------|------|------|
| CO1        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| CO2        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| CO3        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| <b>CO4</b> | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| <b>CO5</b> | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |

| Course Code  | 711E                     |
|--------------|--------------------------|
| Course Name  | INFORMATION SECURITY     |
| Category     | ProgrammeElective Course |
| Prerequisite | Computer Network         |

| Paper-711E                                                                                      |
|-------------------------------------------------------------------------------------------------|
| Information Security                                                                            |
| UNIT-I: 08hrs                                                                                   |
| Attacks on Computers and Computer Security: Introduction, The need for security, Security       |
| goals, Security attacks(Attack on Confidentiality,Integrity,Availability)Security Services and  |
| Mechanisms, Techniques(Cryptography, Steganography).                                            |
| Introduction to plain text and cipher text, encryption and decryption. substitution techniques, |
| transposition techniques, symmetric and asymmetric key cryptography, steganography, possible    |
| types of cryptanalysis attacks.                                                                 |
| UNIT-II: 12hrs                                                                                  |
| Symmetric key Ciphers: Block Cipher principles &Algorithms(DES, AES, Blowfish),                 |
| Differential and Linear Cryptanalysis, Block cipher modes of operation, Stream ciphers          |
| RC4,Location and placement of encryption function.                                              |
| Introduction to number theory-Prime numbers, Euler's Phi-Function, Fermat's and Euler's         |
| theorem, Chinese Remainder Theorem, Generating Primes (Mersenne Prime, Fermat                   |
| Prime), Primality testing (Deterministic algorithms, Probalistic algorithms)                    |
| Asymmetric key Ciphers: Principles of public key cryptosystems, Algorithms(RSA, Diffie-         |
| Hellman), Key Distribution.                                                                     |
| UNIT-III: 10hrs                                                                                 |
| Message Authentication Algorithms and Hash Functions: Message authentication                    |
| (MDC,MAC)Nested MAC,HMAC,CMAC,Whirlpool. Hash functions: MD5 Message Digest                     |
| algorithm, SHA-1. Digital signatures, Authentication Applications: Kerberos, X.509              |
| Authentication Service, Public — Key Infrastructure, Biometric Authentication.                  |
| UNIT-IV: 10hrs                                                                                  |
| E-Mail Security: Pretty Good Privacy, S/MIME IP Security: IP Security overview, IP Security     |
| architecture, Authentication Header, Encapsulating security payload, Combining security         |
| associations, key management.                                                                   |
| Web Security: Web security considerations, Secure Socket Layer and Transport Layer Security,    |
| Secure electronic transaction. Intrusion Detection System(types, techniques).                   |
| Intruders Virus and Firewalls. Intruders Intrusion detection password management Virus          |

**Intruders, Virus and Firewalls:** Intruders, Intrusion detection, password management, and related threats, Countermeasures, Firewall design principles, Types of firewalls. Virus

**Text Book:** 

1. B. A. Forouzan, D. Mukhopadhyay, Cryptography and Network Security, 2<sup>nd</sup> Edition, McGraw Hill, 2007.

## **Reference Books**:

- 1. A. Kahate, Network Security, 2<sup>nd</sup> Edition, McGraw Hill, 2008.
- 2. W. Stalling, Cryptography and Network Security, 4<sup>th</sup> Edition, Pearson Education, 2006.

|            | COURSE OUTCOMES:                                                                      |
|------------|---------------------------------------------------------------------------------------|
|            | After completion of this course successfully, the students will be able to-           |
| <b>CO1</b> | Analyze the working of various Symmetric and Asymmetric key cryptographic             |
|            | algorithms for information security purpose                                           |
| <b>CO2</b> | Identify the basic categories of threats in a networks                                |
| <b>CO3</b> | Able to demonstrate the design and use of hash functions, digital signatures, and key |
|            | distribution with a wide range of key types                                           |
| <b>CO4</b> | Discuss about Web security and Firewalls                                              |
| <b>CO5</b> | Discuss about Intrusion Detection system.                                             |

|     | <b>PO1</b> | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | PS1 | PS2 | PS3 |
|-----|------------|-----|-----|------------|-----|------------|------------|-----|-----|-----|
| CO1 | 2          | 2   | 2   | 1          | 3   | 1          | 1          | 2   | 2   | 1   |
| CO2 | 2          | 1   | 2   | 1          | 2   | 1          | 1          | 2   | 1   | 2   |
| CO3 | 2          | 2   | 2   | 2          | 2   | 2          | 2          | 2   | 2   | 2   |
| CO4 | 2          | 2   | 2   | 1          | 2   | 1          | 2          | 2   | 2   | 1   |
| CO5 | 2          | 2   | 2   | 2          | 2   | 2          | 2          | 2   | 2   | 2   |

| Course Code  | 711F                      |
|--------------|---------------------------|
| Course Name  | SOFT COMPUTING            |
| Category     | Programme Elective Course |
| Prerequisite | Basic Mathematics         |

| Paper-711F                                                                                      |
|-------------------------------------------------------------------------------------------------|
| Soft Computing                                                                                  |
| UNIT-I: 08hrs                                                                                   |
| Fuzzy Logic:Basic definition and terminology of fuzzy set, set theoretic operations, T-norm, T- |
| conorm, Membership function formulation and parameterization, Extension Principle, Fuzzy        |
| relations, Linguistic variables, fuzzy if then rules, Compositional rule of inference, fuzzy    |
| reasoning, fuzzy inference systems, Mamdani fuzzy model.                                        |
|                                                                                                 |
| UNIT-II: 08hrs                                                                                  |
| Neural Network: Evolution of Artificial Neural Network (ANN), McP neural network,               |
| Perceptron, Perceptron convergence theorem, Perceptron learning, Multilayer perceptron, Back-   |
| propagation algorithm, Radial Basis Function, Radial Basis Function Network.                    |
| UNIT-III: 12hrs                                                                                 |
| Genetic Algorithm: Introduction to Genetic Algorithm (GA), Working cycle of a GA, Binary        |
| coded GA, GA-parameter setting, Constraint handling, Advantages and disadvantages of GA.        |
| UNIT-IV: 12hrs                                                                                  |
| Simulated Annealing, Ant-Colony Optimization, Particle Swarm Optimization, Multi-objective      |
| optimization techniques and evolutionary computing.                                             |
| Text Books:                                                                                     |
| 1. J. Shing, R. Jang, C. T. Sun, and E. Mizutani, Neuro Fuzzy And Soft Computing - A            |
| Computational Approach to Learning and Machine Intelligence, 3rd Edition, Pearson               |
| Education, 2008.                                                                                |
| 2. D. K. Pratihar, Soft Computing, 2nd Edition, Narosa Publishing House, 2009.                  |
| 3 S. Havkin, Neural Network - A Comprehensive Foundation, 2nd Edition, Pearson Education        |

3. S. Haykin, Neural Network - A Comprehensive Foundation, 2nd Edition, Pearson Education, 2006.

### **Reference Books:**

- 1. T. Munakata, Fundamentals of the New Artificial Intelligence Neural, Evolutionary, Fuzzy and More, 2nd Edition, Springer, 2014.
- 2. F. O. Karray and C. De Silva, Soft Computing and Intelligent System Design Theory, Tools and Applications, 1st Edition, Pearson Education, 2009.

|            | COURSE OUTCOMES:                                                                       |  |  |  |  |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|            | After completion of this course successfully, the students will be able to             |  |  |  |  |  |  |  |  |  |  |
| <b>CO1</b> | Apply fuzzy logic and fuzzy inference system concept to design automation system for   |  |  |  |  |  |  |  |  |  |  |
|            | real life problems                                                                     |  |  |  |  |  |  |  |  |  |  |
| <b>CO2</b> | Apply the concepts of genetic algorithm to solve engineering optimization problems.    |  |  |  |  |  |  |  |  |  |  |
| <b>CO3</b> | Train the Artificial Neural Network for decision making in real life environment.      |  |  |  |  |  |  |  |  |  |  |
| <b>CO4</b> | Use the concepts of Artificial Neural Network (ANN) to solve real life engineering and |  |  |  |  |  |  |  |  |  |  |
|            | societal problems.                                                                     |  |  |  |  |  |  |  |  |  |  |
| <b>CO5</b> | Apply the concepts of Simulated Annealing, Ant-Colony Optimization, Particle Swarm     |  |  |  |  |  |  |  |  |  |  |
|            | Optimization, Multi-objective optimization techniques to solve engineering             |  |  |  |  |  |  |  |  |  |  |
|            | optimization problems.                                                                 |  |  |  |  |  |  |  |  |  |  |

|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PSO1 | PSO2 | PSO3 |
|------------|------------|-----|-----|-----|-----|------------|------------|------|------|------|
| CO1        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| CO2        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| <b>CO3</b> | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| <b>CO4</b> | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| CO5        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |

| Course Code  | 711G                                    |
|--------------|-----------------------------------------|
| Course Name  | DIGITAL IMAGE PROCESSING                |
| Category     | Program Elective Course                 |
| Prerequisite | Basics of Digital Electronics and Basic |
|              | understanding of calculus               |

### Paper-711G

## **Digital Image Processing**

UNIT-I: 08hrs Digital Image Fundamentals and Transforms: Elements of visual perception: Light, Brightness adaption and discrimination, Pixels, coordinate conventions, Imaging Geometry, Image sampling and quantization Basic relationship between pixels: Basic geometric transformations-Introduction to Fourier Transform and DFT : Properties of 2D Fourier Transform , FFT, Separable Image Transforms ,Walsh – Hadamard – Discrete Cosine Transform, Haar, Slant – Karhunen – Loevetransforms.Perspective Projection, Spatial Domain Filtering, sampling and quantization

**UNIT-II:** 

08hrs

**Image Enhancement Techniques**: Spatial Domain methods: Basic grey level transformation, Histogram equalization, Image subtraction, Image averaging, Spatial filtering: Smoothing, sharpening filters,Laplacian filters, Frequency domain filters : Smoothing, Sharpening filters,Homomorphic filtering.

### UNIT-III:

16hrs

**Image Restoration and Image Compression**: Model of Image Degradation/restoration process: Noise models, inverse filtering, least mean square filtering, constrained least mean square filtering, blind image restoration, Pseudo inverse, Singular value decomposition.

Lossless compression: Variable length coding: LZW coding, Bit plane coding- predictive coding, DPCM.

Lossy Compression: Transform coding – Wavelet coding – Basics of Image compression standards: JPEG, MPEG, Basics of Vector quantization

UNIT-IV:

08hrs

**Image Segmentation and Representation**: Edge detection: Thresholding, Region Based segmentation, Boundary representation: chair codes, Polygonal approximation, Boundary segments: boundary descriptors: Simple descriptors, Fourier descriptors, Regional descriptors, Simple descriptors, Texture.

### **Text Book:**

1. Digital Image Processing, 3rd Edition, by Rafael C Gonzalez and Richard E Woods. Publisher: Pearson Education.

### **Reference Books:**

- 1. Fundamentals of Digital Image Processing, By Anil K Jain
- 2. Digital Image Processing, By William K Pratt, John Willey (2001)
- 3. Image Processing Analysis and Machine Vision, By MillmanSonka, Vaclav hlavac, Roger Boyle, Broos/colic, Thompson Learniy (1999).
- 4. Digital Image Processing and Applications, By, B. Chanda, D. DuttaMagundar, Prentice Hall of India, 2000

|            | COURSE OUTCOMES:                                                                          |
|------------|-------------------------------------------------------------------------------------------|
|            | After completion of this course successfully, the students will be able to-               |
| <b>CO1</b> | Understand the need for image transforms different types of imagetransforms and their     |
|            | properties                                                                                |
| <b>CO2</b> | Develop any image processing application.                                                 |
| <b>CO3</b> | Understand the rapid advances in Machine vision                                           |
| <b>CO4</b> | Learn different techniques employed for the enhancement of images                         |
| <b>CO5</b> | Understand a digital image and different processing techniques for the better analysis of |
|            | an image                                                                                  |
|            |                                                                                           |

### **PO1 PO2 PO3 PO5 PO7 PSO1** PSO2 PSO3 **PO4 PO6 CO1** 3 3 3 3 3 3 3 3 CO2 3 3 3 3 **CO3** 3 3 3 3 3 3 3 3 3 **CO4** 3 3 3 3 3 3 3 **CO5** 3 3

| Course Code  | 711H                                 |
|--------------|--------------------------------------|
| Course Name  | Data Science                         |
| Category     | Programme Elective Course            |
| Prerequisite | Statistics, Mathematics, Programming |
|              | Knowledge                            |

| Paper-711H                                                                                        |
|---------------------------------------------------------------------------------------------------|
| Data Science                                                                                      |
| UNIT-I: 08hrs                                                                                     |
| Brief Introduction to Data Science. Descriptive statistics, notion of probability, distributions, |
| mean, variance, covariance matrix, hypothesis testing                                             |
| UNIT-II: 08hrs                                                                                    |
| Introduction to Machine Learning: Supervised Learning, Decision Tree Induction, Naïve Bayes       |
| Classification, Rule based Classification, K-Nearest Neighbour, Unsupervised Machine learning,    |
| Clustering, K-Means, Association rule mining, Apriori, FP-Tree.                                   |
| UNIT-III: 12hrs                                                                                   |
| Attribute-oriented analysis: Attribute generalization, Attribute relevance, Class comparison,     |
| Statistical measures, Data pre-processing: Data cleaning, Data transformation, Data reduction.    |
| Predictive Modelling: Regression, Decision Tree, SVM.                                             |
| UNIT-IV: 12hrs                                                                                    |
| Feature selection (Filters; Wrappers), Dimensionality reduction: PCA and LDA.                     |
| Ensemble Learning, Bagging, Boosting, Gradient Boosting (Random Forest, Adaptive Boosting)        |
| Time Series Data Analysis: Introduction to Time Series, Correlation, Forecasting (Univariate):    |
| Autoregressive Moving Average (ARMA) models, Autoregressive Integrated Moving Average             |
| (ARIMA) models, Introduction to Deep Learning.                                                    |
| Text Books:                                                                                       |
| 1. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk from The Frontline.          |
| O'Reilly. 2014.                                                                                   |
|                                                                                                   |
| 2. James, G., Witten, D., Hastie, T., Tibshirani, R. An introduction to statistical learning with |
| applications in R. Springer, 2013. Joel Grus, Data Science from Scratch: First Principles with    |
| Python. 1st Edition.                                                                              |
|                                                                                                   |
| 3. Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson.           |
|                                                                                                   |
| 4. Laura Igual and Santi Seguí, Introduction to Data Science, Springer                            |
| Reference Books:                                                                                  |
| 1.Han, J., Kamber, M., Pei, J. Data mining concepts and techniques. Morgan Kaufmann, 2011.        |
| 2. "Practical Data Science with R". Nina Zumel, John Mount. Manning, 2014.                        |
| 3. Davy Cielin, Arno Meysman, Mohamed Ali, Introducing Data Science, Manning                      |

4. Andreas, Practical Data Science, Apress

|            | COURSE OUTCOMES:                                                                                                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | After completion of this course successfully, the students will be able to-                                                                                                                         |
| <b>CO1</b> | Develop in depth understanding of the key technologies in data science and business<br>analytics: data mining, machine learning, visualization techniques, predictive modelling,<br>and statistics. |
| <b>CO2</b> | Practice problem analysis and decision-making.                                                                                                                                                      |
| CO3        | Gain practical, hands-on experience with statistical programming languages and tools through coursework and applied research experiences.                                                           |
| <b>CO4</b> | Analyze and interpret data using an ethically responsible approach.                                                                                                                                 |
| CO5        | Apply data science concepts and methods to solve problems in real-world contexts and will communicate these solutions effectively.                                                                  |

|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | PSO1 | PSO2 | PSO3 |
|------------|------------|-----|-----|-----|-----|------------|------------|------|------|------|
| CO1        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| CO2        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| CO3        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| <b>CO4</b> | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |
| CO5        | 3          |     | 3   |     | 3   |            |            | 3    | 3    | 3    |

## PAPER-712 RESEARCH METHODOLOGY-I

### Unit-I

ii)

### SCOPE, PHILOSOPHY AND ETHICS OF RESEARCH AND ETHICS

- i) Introduction and Scope
  - Introduction to philosophy: definition, nature and scope, concept, branches
- iii) Ethics: definition, moral philosophy, nature of moral judgments and reactions, Research ethics, Institutional ethics committee.
- iv) Ethics with respect to science and research
- v) Intellectual honesty and research integrity

### Unit-II

### SCIENTIFIC CONDUCT

- i) Research problem: Identification, Selection, Formulation of research objectives
- ii) Research design: Components, Types and Importance
- iii) Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP)
- iv) Redundant publications: duplicate and overlapping publications, salami slicing
- v) Selective reporting and misrepresentation of data

### Unit-III

### **TECHNICAL WRITING**

- i) Literature search technique, using SCOPUS, Google Scholar, PUBMED, Web of science, Indian Citation Index, and RG
- ii) Types of technical documents; Full length research paper, Short/Brief communications, Letters to editor, Book chapter, Review, Conference report, Project proposal Components of a full length research paper; , Rationale of the paper, Aims and objectives, Hypothesis building, Work plan, Materials and methodology, Results and discussion, Conflict of interest statement,
- iii) Components of a research proposal; Project summary Key words, Origin of the proposal, Major objectives Methodology, Instrument facility available in the PI's department, Overview of status of Research and Development in the subject, Importance of the proposed project in the context of current status.
- iv)Styles of referencing; APA, MLA, Oxford, Harvard, Chicago, Annotated bibliography, Tools for citing and referencing, Grammarly, Endnote etc, How to cite and how to do referencing

### Unit-IV

### **PUBLICATION ETHICS**

i) Publication ethics: definition, introduction and importance

- ii) Best practices / standards setting initiatives and guidelines: COPE, WAME, etc.
- iii) Conflicts of interest
- iv) Publication misconduct: definition, concept, problems that lead to unethical behavior and vice versa, types
- v) Violation of publication ethics, Subject specific ethical issues, FFP, authorship,
- vi) Identification of publication misconduct, complaints and appeals
- vii) Predatory publishers and journals
- viii) Plagiarism-Pitfall
- ix) Use of plagiarism software like Turnitin, Urkund and other open source software tools, . Complaints and appeals: examples and fraud from India and abroad

## PAPER-713 RESEARCH METHODOLOGY-II

### Unit-I

### IPR AND CYBER LAW.

- i) Patents, Patent laws, process of patenting a research finding
- ii) Intellectual property (IP), Intellectual property right (IPR)
- iii) Copyright, Trademarks, GI
- iv) Cyber laws
- v) COPE
- Unit-II

### **QUANTITATIVE DATA ANALYSIS**

- i) Types of Data, Data Collection Methods and Tools
- ii) Hypothesis testing
- iii) Normal and Binomial distributions and their property
- iv) Tests of significance: Student t- test, F- test, Chi-square test
- v) Correlation and Regression
- vi) ANOVA One-way and Two-way, Multiple-range test

### Unit-III

### **COMPUTER FUNDAMENTALS**

- i) Introduction to MS-Office software: MS-Word(Track change)
- ii) MS-Excel
- iii) MS-Power Point
- iv) Features for Statistical Data Analysis Tool Pack, SPSS
- v) Tables, Figures and Pictures using Excel
- vi) Preparation of Posters
- vii) Electronic submission of manuscripts
- viii) Communication skills, oral and poster

### Unit-IV

### **ADVANCED TOOLS & TECHNIQUES IN RESEARCH**

- i) Indexing databases
- ii) Citation databases: Web of Science, Scopus, etc.
- iii) Research Metrics
- iv) Impact Factor of journal as per Journal Citation Report, SNIP, SJR, IPP, Cite Score
- v) Metrics: h-index, g index, i10 index, altmetrics
- vi) Open access publications and initiatives
- vii)SHERPA/RoMEO online resource to check publisher copyright & self-archiving policies

viii) Software tool to identify predatory publications developed by SPPU

ix) Journal finder /journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer Journal Suggester, etc.

## Paper-714

## **REVIEW WORK**

Each Ph.D (Computer Science) student is required compulsorily to select a problem on any area of Computer Science, carry out intensive review of literature and prepare a report to be presented followed by viva-voce. The evaluation of review work shall be jointly made by both the external and internal examiners.

The marks shall be distributed as follows:- Written report- 150 Presentation - 25 Viva-Voce – 25. **End Term-200**